Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(43): 48582-48597, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36269760

RESUMEN

Research involved in developing alternative energy sources has become a necessity to face global warming. In this context, superconductivity is an appealing solution to enhance clean electrical energy provided that lower production costs can be attained. By implementation of chemical solution deposition techniques and high-throughput growth methods, low-cost nanostructured epitaxial cuprate superconductors are timely candidates. Here, we present a versatile and tunable solution method suitable for the preparation of high-performance epitaxial cuprate superconducting films. Disregarding the renowned trifluoroacetate route, we center our focus on the transient liquid-assisted growth (TLAG) that meets the requirement of being a greener chemical process together with ultrafast growth rates beyond 100 nm/s. We developed a facile, fast, and cost-effective method, starting from the synthesis of metal-propionate powders of Y, Ba, and Cu of high purity and high yields, being the precursors of the fluorine-free solutions, which enable the chemical and microstructural nanoscale homogeneity of YBa2Cu3O7-x (YBCO) precursor films. These solutions present endured stability and enable precise tunability of the composition, concentration, porosity, and film thickness. Homogeneous precursor films up to thicknesses of 2.7 µm through eight layer multidepositions are demonstrated, thus establishing the correct basis for epitaxial growth using the fast kinetics of the TLAG process. YBCO films of 500 nm thickness with a critical current density of 2.6 MA/cm2 at 77 K were obtained, showing the correlation of precursor film homogeneity to the final YBCO physical properties.

2.
Adv Sci (Weinh) ; 9(32): e2203834, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116124

RESUMEN

Transient liquid assisted growth (TLAG) is an ultrafast non-equilibrium growth process mainly governed by kinetic parameters, which are only accessible through fast in situ characterizations. In situ synchrotron X-ray diffraction (XRD) analysis and in situ electrical resistivity measurements are used to derive kinetic diagrams of YBa2 Cu3 O7- x (YBCO) superconducting films prepared via TLAG and to reveal the unique peculiarities of the process. In particular, diagrams for the phase evolution and the YBCO growth rates have been built for the two TLAG routes. It is shown that TLAG transient liquids can be obtained upon the melting of two barium cuprate phases (and not just one), differentiated by their copper oxidation state. This knowledge serves as a guide to determine the processing conditions to reach high performance films at high growth rates. With proper control of these kinetic parameters, films with critical current densities of 2-2.6 MA cm-2 at 77 K and growth rates between 100-2000 nm s-1 are reached. These growth rates are 1.5-3 orders of magnitude higher than those of conventional methods.

3.
ACS Omega ; 7(18): 15315-15325, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35571796

RESUMEN

The primary benefit of a metallic stabilization/shunt in high temperature superconductor (HTS) coated conductors (CCs) is to prevent joule heating damage by providing an alternative path for the current flow during the HTS normal state transition (i.e., quench). However, the shunt presence in combination with unavoidable fluctuations in the critical current (I c) of the HTS film can develop a localized quench along the CC's length if the operational current is kept close to I c. This scenario, also known as the hot-spot regime, can lead to the rupture of the CC if the local quench does not propagate fast enough. The current flow diverter (CFD) is the CC architecture concept that has proven to increase the conductor's robustness against a hot-spot regime by simply boosting the quench velocity in the CC, which avoids the shunt compromise in some applications. This work investigates a practical manufacturing route for incorporating the CFD architecture in a reel-to-reel system via the preparation of yttrium oxide (Y2O3) as an insulating thin nanolayer (∼100 nm) on top of a GdBa2Cu3O7 (GdBCO) superconductor. Chemical solution deposition (CSD) using ink jet printing (IJP) is shown to be a suitable manufacturing approach. Two sequences of the experimental steps have been investigated, where oxygenation of the GdBCO layer is performed after or before the solution deposition and the Y2O3 nanolayer thermal treatment formation step. A correlated analysis of the microstructure, in situ oxygenation kinetics, and superconducting properties of the Ag/Y2O3/GdBCO trilayer processed under different conditions shows that a new customized functional CC can be prepared. The successful achievement of the CFD effect in the case of the preoxygenated customized CC was confirmed by measuring the current transfer length, thus demonstrating the effectiveness of the CSD-IJP as a processing method.

4.
ACS Appl Mater Interfaces ; 13(7): 9101-9112, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33576610

RESUMEN

Combinatorial and high-throughput experimentation (HTE) is achieving more relevance in material design, representing a turning point in the process of accelerated discovery, development, and optimization of materials based on data-driven approaches. The versatility of drop-on-demand inkjet printing (IJP) allows performing combinatorial studies through fabrication of compositionally graded materials with high spatial precision, here by mixing superconducting REBCO precursor solutions with different rare earth (RE) elements. The homogeneity of combinatorial Y1-xGdxBa2Cu3O7 samples was designed with computational methods and confirmed by energy-dispersive X-ray spectroscopy (EDX) and high-resolution X-ray diffraction (XRD). We reveal the advantages of this strategy in the optimization of the epitaxial growth of high-temperature REBCO superconducting films using the novel transient liquid-assisted growth method (TLAG). Advanced characterization methods, such as in situ synchrotron growth experiments, are tailored to suit the combinatorial approach and demonstrated to be essential for HTE schemes. The experimental strategy presented is key for the attainment of large datasets for the implementation of machine learning backed material design frameworks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...