Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Genome ; : e20496, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099220

RESUMEN

Phenotypic selection of complex traits such as seed yield and protein in the preliminary yield trial (PYT) is often constrained by limited seed availability, resulting in trials with few environments and minimal to no replications. Multi-trait multi-environment enabled genomic prediction (MTME-GP) offers a valuable alternative to predict missing phenotypes of selection candidates for multiple traits and diverse environments. In this study, we assessed the efficiency of MTME-GP for improving seed protein and seed yield in field pea, the top two breeding targets but highly antagonistic traits in pulse crop. We utilized a set of 300 selection candidates in the PYT that virtually represented all possible families of the North Dakota State University field pea breeding program. Selection candidates were evaluated in three diverse, contrasting environments, as indicated by a range of heritability. Using whole- and split-environment cross validation schemes, MTME-GP had higher predictive ability than a standard additive G-BLUP model. Integrating a range of overlapping genotypes in between environments showed improvement on the predictive ability of the MTME-GP model but tends to plateau at 50%-80% training set size. Regardless of the cross-validation scheme, accuracy was among the lowest in stressed environments, presumably due to low heritability for seed protein and yield. This study provided insights into the potential of MTME-GP in a public pulse crop breeding program. The MTME-GP framework can be further improved with more testing environments and integration of additional orthogonal information in the early stages of the breeding pipeline.

2.
Plant Genome ; 15(4): e20260, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36193571

RESUMEN

Multi-trait genomic selection (MT-GS) has the potential to improve predictive ability by maximizing the use of information across related genotypes and genetically correlated traits. In this study, we extended the use of sparse phenotyping method into the MT-GS framework by split testing of entries to maximize borrowing of information across genotypes and predict missing phenotypes for targeted traits without additional phenotyping expenditure. Using 300 advanced breeding lines from North Dakota State University (NDSU) pulse breeding program and ∼200 USDA accessions that were evaluated for 10 nutritional traits, our results show that the proposed sparse phenotyping aided MT-GS can further improve predictive ability by >12% across traits compared with univariate (UNI) genomic selection. The proposed strategy departed from the previous reports that weak genetic correlation is a limitation to the advantage of MT-GS over UNI genomic selection, which was evident in the partially balanced phenotyping-enabled MT-GS. Our results point to heritability and genetic correlation between traits as possible metrics to optimize and further improve the estimation of model parameters, and ultimately, prediction performance. Overall, our study offers a new approach to optimize the prediction performance using the MT-GS and further highlight strategy to maximize the efficiency of GS in a plant breeding program. The sparse-testing-aided MT-GS proposed in this study can be further extended to multi-environment, multi-trait GS to improve prediction performance and further reduce the cost of phenotyping and time-consuming data collection process.


We extended the use of sparse phenotyping into the multi-trait genomic selection (MT-GS) framework by split testing of entries. The sparse-phenotyping-aided MT-GS can increase predictive ability by >12% across traits. Heritability and genetic correlation are possible metrics to optimize and further improve prediction performance of MT-GS. The sparse-testing-aided MT-GS can be further extended to multi-environment, multi-trait GS framework.


Asunto(s)
Pisum sativum , Fitomejoramiento , Fenotipo , Genómica/métodos , Semillas , Minerales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA