Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Aquat Toxicol ; 271: 106935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723468

RESUMEN

Blood lipid-lowering agents, such as Pravastatin, are among the most frequently used pharmaceuticals released into the aquatic environment. Although their effects on humans are very well understood, their consequences on freshwater organisms are not well known, especially in chronic exposure conditions. Gammarus fossarum is commonly used as sentinel species in ecotoxicology because of its sensitivity to a wide range of environmental contaminants and the availability of standardized bioassays. Moreover, there is an increased interest in linking molecular changes in sentinel species, such as gammarids, to observed toxic effects. Here, we performed a reproductive toxicity assay on females exposed to different concentrations of pravastatin (30; 300; 3,000 and 30,000 ng L-1) during two successive reproductive cycles and we applied ToF-SIMS imaging to evaluate the effect of pravastatin on lipid homeostasis in gammarids. Reproductive bioassay showed that pravastatin could affect oocyte development in Gammarus fossarum inducing embryotoxicity in the second reproductive cycle. Mass spectrometry imaging highlighted the disruption in vitamin E production in the oocytes of exposed female gammarids at the second reproductive cycle, while limited alterations were observed in other lipid classes, regarding both production and tissue distribution. The results demonstrated the interest of applying spatially resolved lipidomics by mass spectrometry imaging to assess the molecular effects induced by long-term exposure to environmental pharmaceutical residues in sentinel species.


Asunto(s)
Anfípodos , Pravastatina , Reproducción , Contaminantes Químicos del Agua , Animales , Pravastatina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Femenino , Anfípodos/efectos de los fármacos , Reproducción/efectos de los fármacos , Espectrometría de Masa de Ion Secundario , Oocitos/efectos de los fármacos , Vitamina E
2.
Anal Chim Acta ; 1304: 342533, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637034

RESUMEN

BACKGROUND: DIA (Data-Independent Acquisition) is a powerful technique in Liquid Chromatography coupled with high-resolution tandem Mass Spectrometry (LC-MS/MS) initially developed for proteomics studies and recently emerging in metabolomics and lipidomics. It provides a comprehensive and unbiased coverage of molecules with improved reproducibility and quantitative accuracy compared to Data-Dependent Acquisition (DDA). Combined with the Zeno trap and Electron-Activated Dissociation (EAD), DIA enhances data quality and structural elucidation compared to conventional fragmentation under CID. These tools were applied to study the lipidome and metabolome of the freshwater amphipod Gammarus fossarum, successfully discriminating stages and highlighting significant biological features. Despite being underused, DIA, along with the Zeno trap and EAD, holds great potential for advancing research in the omics field. RESULTS: DIA combined with the Zeno trap enhances detection reproducibility compared to conventional DDA, improving fragmentation spectra quality and putative identifications. LC coupled with Zeno-SWATH-DIA methods were used to characterize molecular changes in reproductive cycle of female gammarids. Multivariate data analysis including Principal Component Analysis and Partial Least Square Discriminant Analysis successfully identified significant features. EAD fragmentation helped to identify unknown features and to confirm their molecular structure using fragmentation spectra database annotation or machine learning. EAD database matching accurately annotated five glycerophospholipids, including the position of double bonds on fatty acid chain moieties. SIRIUS database predicted structures of unknown features based on experimental fragmentation spectra to compensate for database incompleteness. SIGNIFICANCE: Reproducible detection of features and confident identification of putative compounds are pivotal stages within analytical pipelines. The DIA approach combined with Zeno pulsing enhances detection sensitivity and targeted fragmentation with EAD in positive polarity provides orthogonal fragmentation information. In our study, Zeno-DIA and EAD thereby facilitated a comprehensive and insightful exploration of pertinent biological molecules associated with the reproductive cycle of gammarids. The developed methodology holds great promises for identifying informative biomarkers on the health status of an environmental sentinel species.


Asunto(s)
Anfípodos , Lipidómica , Animales , Femenino , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Electrones , Muda , Reproducibilidad de los Resultados , Metaboloma , Aprendizaje Automático
3.
Anal Bioanal Chem ; 416(12): 2893-2911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492024

RESUMEN

The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry-based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.


Asunto(s)
Anfípodos , Lípidos , Metabolómica , Animales , Anfípodos/metabolismo , Anfípodos/química , Lípidos/química , Lípidos/análisis , Metabolómica/métodos , Lipidómica/métodos , Espectrometría de Masas/métodos , Especies Centinela/metabolismo , Electrones
4.
Sci Rep ; 14(1): 2384, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286808

RESUMEN

Bile acids (BA) are key for liver regeneration and injury. This study aims at analyzing the changes in the BA pool induced by ischemia-reperfusion (IRI) and investigates the impact of hypothermic oxygenated perfusion (HOPE) on the BA pool compared to static cold storage (SCS). In a porcine model of IRI, liver grafts underwent 30 min of asystolic warm ischemia followed by 6 h of SCS (n = 6) ± 2 h of HOPE (n = 6) and 2 h of ex-situ warm reperfusion. The BA pool in bile samples was analyzed with liquid chromatography coupled with tandem mass spectrometry. We identified 16 BA and observed significant changes in response to ischemia-reperfusion, which were associated with both protective and injury mechanisms. Second, HOPE-treated liver grafts exhibited a more protective BA phenotype, characterized by a more hydrophilic BA pool compared to SCS. Key BA, such as GlycoCholic Acid, were identified and were associated with a decreased transaminase release and improved lactate clearance during reperfusion. Partial Least Square-Discriminant Analysis revealed a distinct injury profile for the HOPE group. In conclusion, the BA pool changes with liver graft IRI, and preservation with HOPE results in a protective BA phenotype compared to SCS.


Asunto(s)
Ácidos y Sales Biliares , Daño por Reperfusión , Porcinos , Animales , Preservación de Órganos/métodos , Perfusión/métodos , Hígado/fisiología , Isquemia
5.
Artículo en Inglés | MEDLINE | ID: mdl-37634392

RESUMEN

The field of metabolomics based on mass spectrometry has grown considerably in recent years due to the need to detect and, above all, quantify a very large number of metabolites, simultaneously. Up to now, targeted multiplexed analysis on complex samples by Liquid Chromatography coupled with tandem Mass Spectrometry (LC-MS/MS) has relied almost exclusively on compound detection based on absolute retention times, as in the Scheduled-MRM (sMRM) approach. Those methods turn out to be poorly transferable from one instrument to another and result in a time-consuming and tedious method development involving a significant number of critical parameters that need specific re-optimisation. To address this challenge, we introduce a novel acquisition mode called scout-triggered MRM (stMRM). In stMRM, a marker transition is used to trigger MS analysis for a group of dependent target analytes. These marker transitions are strategically distributed throughout the chromatographic run, and the dependent analytes are associated based on their retention times. The result is a targeted assay that remains robust even in the presence of retention time shifts. A 3 to 5-fold increase in the number of detected transitions associated to plasma metabolites was obtained when transferring from a direct application of a published sMRM to a stMRM method. This significant improvement highlights the universal applicability of the stMRM method, as it can be implemented on any LC system without the need for extensive method development. We subsequently illustrate the robustness of stMRM in modified chromatographic elution conditions. Despite a large change in metabolite's selectivity, the multiplexed assay successfully recovered 70% of the monitored transitions when consequently modifying the gradient method. These findings demonstrate the versatility and adaptability of stMRM, opening new avenues for the development of highly multiplexed LC-MS/MS methods in metabolomics. These methods are characterized by their analytical transparency and straightforward implementation using existing literature data.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Bioensayo , Plasma
6.
Sci Total Environ ; 893: 164875, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329916

RESUMEN

Mass spectrometry in multiple reaction monitoring (MRM) mode is a powerful technique that can provide highly selective, multiplexed, and reproducible quantification of peptides derived from proteins. Ideal for the application of molecular biomarkers in biomonitoring surveys, MRM tools have been recently developed to quantify sets of pre-selected biomarkers in freshwater sentinel species. Still limited to the validation and application phase of biomarkers, dynamic MRM (dMRM) acquisition mode has increased the multiplexing capacity of mass spectrometers, expanding opportunities to explore proteome modulations in sentinel species. This study evaluated the feasibility to propose dMRM tools for investigating sentinel species proteomes at the organ level and demonstrated its potential for screening contaminant effects and discovering new protein biomarkers. As a proof of concept, a dMRM assay was developed to comprehensively capture the functional proteome of the caeca of Gammarus fossarum, a freshwater crustacean, commonly used as a sentinel species in environmental biomonitoring. The assay was then used to assess the effects of sub-lethal concentrations of cadmium, silver, and zinc on gammarid caeca. Results showed dose-response and specific metal effects on caecal proteomes, with a slight effect of zinc compared to the two non-essential metals. Functional analyses indicated that cadmium affected proteins involved in carbohydrate metabolism, digestive and immune processes, while silver affected proteins related to oxidative stress response, chaperonin complexes and fatty acid metabolism. Based on these metal-specific signatures, several proteins modulated in a dose-dependent manner were proposed as candidate biomarkers for tracking the level of these metals in freshwater ecosystems. Overall, this study highlights the potential of dMRM to decipher the specific modulations of proteome expression induced by contaminant exposure and pinpoints specific response signatures, offering new perspectives for the de novo identification and development of biomarkers in sentinel species.


Asunto(s)
Anfípodos , Gastrópodos , Animales , Anfípodos/fisiología , Biomarcadores/metabolismo , Cadmio/toxicidad , Ecosistema , Gastrópodos/metabolismo , Proteoma , Especies Centinela/metabolismo , Plata/toxicidad , Zinc/toxicidad
7.
Space Sci Rev ; 219(1): 13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36785654

RESUMEN

Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries. Spacecraft observations began with Mariner 2 in 1962 when we confirmed that Venus was a hothouse planet, rather than the tropical paradise science fiction pictured. As long as our level of exploration and understanding of Venus remains far below that of Mars, major questions will endure. On the other hand, exoplanetary science has grown leaps and bounds since the discovery of Pegasus 51b in 1995, not too long after the golden years of Venus spacecraft missions came to an end with the Magellan Mission in 1994. Multi-million to billion dollar/euro exoplanet focused spacecraft missions such as JWST, and its successors will be flown in the coming decades. At the same time, excitement about Venus exploration is blooming again with a number of confirmed and proposed missions in the coming decades from India, Russia, Japan, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). Here we review what is known and what we may discover tomorrow in complementary studies of Venus and its exoplanetary cousins.

8.
Talanta ; 253: 123806, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113334

RESUMEN

Omics study exemplified by proteomics, lipidomics or metabolomics, provides the opportunity to get insight of the molecular modifications occurring in living organisms in response to contaminants or in different physiological conditions. However, individual omics discloses only a single layer of information leading to a partial image of the biological complexity. Multiplication of samples preparation and processing can generate analytical variations resulting from several extractions and instrumental runs. To get all the -omics information at the proteins, metabolites and lipids level coming from a unique sample, a specific sample preparation must be optimized. In this study, we streamlined a biphasic extraction procedure based on a MTBE/Methanol mixture to provide the simultaneous extraction of polar (proteins, metabolites) and apolar compounds (lipids) for multi-omics analyses from a unique biological sample by a liquid chromatography (LC)/mass spectrometry (MS)/MS-based targeted approach. We applied the methodology for the study of female amphipod Gammarus fossarum during the reproductive cycle. Multivariate data analyses including Partial Least Squares Discriminant Analysis and multiple factor analysis were applied for the integration of the multi-omics data sets and highlighted molecular signatures, specific to the different stages.


Asunto(s)
Multiómica , Proteómica , Femenino , Humanos , Análisis de Datos , Lipidómica , Metabolómica
9.
Environ Pollut ; 315: 120393, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36223854

RESUMEN

Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized molecular markers in freshwater sentinel species. While this technique is typically used for the validation of protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides highly modulated in the environment and derived from proteins likely involved in the environmental stress response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins responding to relevant environmental conditions in sentinel species.


Asunto(s)
Anfípodos , Especies Centinela , Animales , Masculino , Monitoreo del Ambiente/métodos , Anfípodos/metabolismo , Agua Dulce/química , Biomarcadores/metabolismo , Espectrometría de Masas
10.
iScience ; 24(2): 102115, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33615205

RESUMEN

Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies.

11.
Anal Bioanal Chem ; 412(26): 7333-7347, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32808052

RESUMEN

A highly multiplexed liquid chromatography mass spectrometry-multiple reaction monitoring (MRM)-based assay has been developed for evaluating 107 candidate immune biomarkers in both hemocytes and plasma of the zebra mussel Dreissena polymorpha. The Scout-MRM strategy was employed for the first time, shortening the implementation of a targeted MRM bottom-up proteomics assay using selected immune protein-related peptides identified by shotgun discovery proteogenomics. This strategy relies on spiking scout peptides during the discovery phase and using them to build and deploy the MRM targeted proteomics method. It proved to be highly relevant, since about 90% of the targeted peptides and proteins were monitored and rapidly measured in both hemocyte and plasma samples. The sample preparation protocol was optimized by evaluating the digestion efficiency of tryptic peptides over time. The accuracy and precision of 50 stable isotope-labeled peptides were evaluated for use as internal standards. Finally, the specificity of the transitions was thoroughly assessed to ensure the reliable measurement of protein biomarkers. Several analytical and biological validation criteria were evaluated across hemocytes and plasma samples exposed ex vivo to biological contaminants, resulting in the validation of two Scout-MRM assays for the relative quantitation of 85 and 89 proteins in hemocytes and plasma, respectively. Graphical abstract.


Asunto(s)
Dreissena/metabolismo , Proteómica/métodos , Animales , Biomarcadores/metabolismo , Cromatografía Liquida/métodos , Dreissena/inmunología , Espectrometría de Masas/métodos
12.
J Proteomics ; 226: 103901, 2020 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-32668291

RESUMEN

Ecotoxicoproteomics employs mass spectrometry-based approaches centered on proteins of sentinel organisms to assess for instance, chemical toxicity in fresh water. In this study, we combined proteogenomics experiments and a novel targeted proteomics approach free from retention time scheduling called Scout-MRM. This methodology will enable the measurement of simultaneously changes in the relative abundance of multiple proteins involved in key physiological processes and potentially impacted by contaminants in the freshwater sentinel Gammarus fossarum. The development and validation of the assay were performed to target 157 protein biomarkers of this non-model organism. We carefully chose and validated the transitions to monitor using conventional parameters (linearity, repeatability, LOD, LOQ). Finally, the potential of the methodology is illustrated by measuring 277-peptide-plex assay (831 transitions) in sentinel animals exposed in natura to different agricultural sites potentially exposed to pesticide contamination. Multivariate data analyses highlighted the modulation of several key proteins involved in feeding and molting. This multiplex-targeted proteomics assay paves the way for the discovery and the use of a large panel of novel protein biomarkers in emergent ecotoxicological models for environmental monitoring in the future. BIOLOGICAL SIGNIFICANCE: The study contributed to the development of Scout-MRM for the high-throughput quantitation of a large panel of proteins in the Gammarus fossarum freshwater sentinel. Increasing the number of markers in ecotoxicoproteomics is of most interest to assess the impact of pollutants in freshwater organisms. The development and validation of the assay enabled the monitoring of a large panel of reporter peptides of exposed gammarids. To illustrate the applicability of the methodology, animals from different agricultural sites were analysed. The application of the assay highlighted the modulation of some biomarker proteins involved in key physiological pathways, such as molting, feeding and general stress response. Increasing multiplexing capabilities and field test will provide the development of diagnostic protein biomarkers for emergent ecotoxicological models in future environmental biomonitoring programs.


Asunto(s)
Anfípodos , Animales , Biomarcadores , Ecotoxicología , Monitoreo del Ambiente , Proteómica
13.
J Mass Spectrom ; 55(9): e4531, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32567158

RESUMEN

The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high-resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.


Asunto(s)
Anfípodos/química , Espectrometría de Movilidad Iónica/métodos , Lípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Femenino , Isomerismo , Lípidos/química , Estructura Molecular , Espectrometría de Masas en Tándem
14.
Sci Rep ; 10(1): 6226, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277127

RESUMEN

Biological responses of zebra mussel Dreissena polymorpha are investigated to assess the impact of contaminants on aquatic organisms and ecosystems. In addition to concentrate chemical contaminants in their tissues, zebra mussels accumulate several microorganisms such as viruses, protozoa and bacteria. In order to understand the molecular mechanisms involved in the defence against microorganisms this study aims at identifying immune proteins from D. polymorpha hemolymph involved in defence against protozoa and viruses. For this purpose, hemolymph were exposed ex vivo to Cryptosporidium parvum and RNA poly I:C. Differential proteomics on both hemocytes and plasma revealed immune proteins modulated under exposures. Different patterns of response were observed after C. parvum and RNA poly I:C exposures. The number of modulated proteins per hemolymphatic compartments suggest that C. parvum is managed in cells while RNA poly I:C is managed in plasma after 4 h exposure. BLAST annotation and GO terms enrichment analysis revealed further characteristics of immune mechanisms. Results showed that many proteins involved in the recognition and destruction of microorganisms were modulated in both exposure conditions, while proteins related to phagocytosis and apoptosis were exclusively modulated by C. parvum. This differential proteomic analysis highlights in zebra mussels modulated proteins involved in the response to microorganisms, which reflect a broad range of immune mechanisms such as recognition, internalization and destruction of microorganisms. This study paves the way for the identification of new markers of immune processes that can be used to assess the impact of both chemical and biological contaminations on the health status of aquatic organisms.


Asunto(s)
Dreissena/inmunología , Hemocitos/metabolismo , Hemolinfa/inmunología , Interacciones Microbiota-Huesped/inmunología , Animales , Apoptosis/inmunología , Cryptosporidium parvum/inmunología , Dreissena/parasitología , Dreissena/virología , Hemocitos/inmunología , Hemolinfa/citología , Hemolinfa/metabolismo , Inmunidad Innata , Fagocitosis/inmunología , Poli I-C/inmunología , Proteómica
15.
J Chromatogr A ; 1621: 461046, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32204882

RESUMEN

In this work, an innovative method is described for multi-residue pesticide analysis by liquid chromatography coupled to targeted mass spectrometry, called "Scout-MRM, this new acquisition mode relies on the monitoring by either endogenous or spiked Scout compounds, hence fully releasing the monitoring of target molecules from time scheduling. As a proof of concept, a Scout-MRM method was built where 5 transitions groups tracking a total of 191 pesticides where successively triggered under the control of 5 spiked-in deuterated pesticides. As expected from its retention time independency, Scout-MRM demonstrates strong detection robustness towards modifications of gradient parameters, as well as easy method transfer between distinct analytical platforms with nearly 100% recovery after a single run. Finally, Scout-MRM was used for the multi-residue screening and quantification of pesticides in real surface water samples, by applying an external calibration procedure and comparing it with classical scheduled reaction monitoring methods.


Asunto(s)
Cromatografía Liquida/métodos , Residuos de Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos
16.
Proteomics ; 20(2): e1900254, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31872952

RESUMEN

MS-based targeted proteomics is a relevant technology for sensitive and robust relative or absolute quantification of proteins biomarker candidates in complex human biofluids or tissue extracts. Performing a multiplex assay imposes time scheduling of peptide monitoring only around their expected retention time that needs to be defined with synthetic peptide. Time-scheduled monitoring is clearly a constraint that precludes from straightforward assay transfer between biological matrices or distinct experimental setup. Any unexpected retention time (RT) shift challenges assay robustness and its implementation for large-scale analysis. Recently, Scout-multiple reaction monitoring that fully releases multiplexed targeted acquisition from RT scheduling by successively monitoring complex transition groups triggered with sentinel molecules called Scout has been introduced. It is herein documented how Peptide Selector database and tool streamlines the building of a multiplexed method thanks to RT indexation relative to Scout peptides. This case study deals with surrogate peptides of biomarker candidates related to drug-induced liver and vascular injury, running such on-line built method (eight Scouts triggering the monitoring of a total of 692 transitions) enables 100% recovery of a panel of 93 spiked-in heavy labeled standards, despite significant RT shifts between serum, plasma, or urine. This result illustrates the simplicity of automatically building and deploying robust proteomics targeted assay.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/química , Biomarcadores/metabolismo , Proteómica/métodos
17.
Proc Natl Acad Sci U S A ; 116(38): 19046-19054, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31484764

RESUMEN

Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversification of embryonic colors in this group of insects. We show that the pteridine biosynthesis pathway, which ancestrally produces red pigment in the eyes, has been recruited during embryogenesis in various extraocular tissues including antennae and legs. In addition, we discovered that this cooption is common to all water striders and initially resulted in the production of yellow extraocular color. Subsequently, 6 lineages evolved bright red color and 2 lineages lost the color independently. Despite the high diversity in colors and color patterns, we show that the underlying biosynthesis pathway remained stable throughout the 200 million years of Gerromorpha evolutionary time. Finally, we identified erythropterin and xanthopterin as the pigments responsible for these colors in the embryo of various species. These findings demonstrate how traits can emerge through the activation of a biosynthesis pathway in new developmental contexts.


Asunto(s)
Color , Embrión no Mamífero/metabolismo , Heterópteros/fisiología , Pigmentación/fisiología , Pigmentos Biológicos/metabolismo , Pteridinas/metabolismo , Transducción de Señal , Animales , Evolución Biológica , Embrión no Mamífero/citología , Ojo/citología , Ojo/metabolismo , Heterópteros/clasificación , Fenotipo , Filogenia
18.
J Proteomics ; 202: 103366, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31015035

RESUMEN

The immune system of bivalves is of great interest since it reflects the health status of these organisms during stressful conditions. While immune molecular responses are well documented for marine bivalves, few information is available for continental bivalves such as the zebra mussel, Dreissena polymorpha. A proteogenomic approach was conducted on both hemocytes and plasma to identified immune proteins of this non-model species. Combining transcriptomic sequences with mass spectrometry data acquired on proteins is a relevant strategy since 3020 proteins were identified, representing the largest protein inventory for this sentinel organism. Functional annotation and gene ontology (GO) analysis performed on the identified proteins described the main molecular players of hemocytes and plasma in immunity. GO analysis highlights the complementary immune functions of these two compartments in the management of micro-organisms. Functional annotation revealed new mechanisms in the immune defence of the zebra mussel. Proteins rarely observed in the hemolymph of bivalves were pinpointed such as natterin-like and thaumatin-like proteins. Furthermore, the high abundance of complement-related proteins observed in plasma suggested a strong implication of the complement system in the immune defence of D. polymorpha. This work brings a better understanding of the molecular mechanisms involved in zebra mussel immunity. SIGNIFICANCE: Although the molecular mechanisms of marine bivalves are widely investigated, little information is known for continental bivalves. Moreover, few proteomic studies described the complementarity of both hemolymphatic compartments (cellular and plasmatic) in the immune defence of invertebrates. The recent proteogenomics concept made it possible to discover proteins in non-model organisms. Here, we propose a proteogenomic strategy with the zebra mussel, a key sentinel species for biomonitoring of freshwater, to identify and describe the molecular actors involved in the immune system in both hemocytes and plasma compartments. More widely, this study provided new insight into bivalve immunity.


Asunto(s)
Bivalvos/inmunología , Hemocitos/inmunología , Hemolinfa/inmunología , Proteogenómica , Animales , Agua Dulce
19.
J Proteomics ; 198: 66-77, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30529745

RESUMEN

Anthropogenic pollutants are found worldwide. Their fate and effects on human and ecosystem health must be appropriately monitored. Today, ecotoxicology is focused on the development of new methods to assess the impact of pollutant toxicity on living organisms and ecosystems. In situ biomonitoring often uses sentinel animals for which, ideally, molecular biomarkers have been defined thanks to which environmental quality can be assessed. In this context, high-throughput proteomics methods offer an attractive approach to study the early molecular responses of organisms to environmental stressors. This approach can be used to identify toxicity pathways, to quantify more precisely novel biomarkers, and to draw the possible adverse outcome pathways. In this review, we discuss the major advances in ecotoxicoproteomics made over the last decade and present the current state of knowledge, emphasizing the technological and conceptual advancements that allowed major breakthroughs in this field, which aims to "make our planet great again". SIGNIFICANCE: Ecotoxicoproteomics is a protein-centric methodology that is useful for ecotoxicology and could have future applications as part of chemical risk assessment and environmental monitoring. Ecotoxicology employing non-model sentinel organisms with highly divergent phylogenetic backgrounds aims to preserve the functioning of ecosystems and the overall range of biological species supporting them. The classical proteomics workflow involves protein identification, functional annotation, and extrapolation of toxicity across species. Thus, it is essential to develop multi-omics approaches in order to unravel molecular information and construct the most suitable databases for protein identification and pathway analysis in non-model species. Current instrumentation and available software allow relevant combined transcriptomic/proteomic studies to be performed for almost any species. This review summarizes these approaches and illustrates how they can be implemented in ecotoxicology for routine biomonitoring.


Asunto(s)
Ecosistema , Ecotoxicología , Monitoreo del Ambiente/métodos , Proteómica , Animales , Ecotoxicología/métodos , Ecotoxicología/tendencias , Humanos , Proteómica/métodos , Proteómica/tendencias
20.
Environ Sci Technol ; 51(22): 13417-13426, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29068690

RESUMEN

As a proof of principle, a selected reaction monitoring (SRM) mass spectrometry-based methodology was applied to the simultaneous quantification of dozens of protein biomarkers in caged amphipods (Gammarus fossarum). We evaluated the suitability of the methodology to assess complex field contaminations through its application in the framework of a regional river monitoring network. Thanks to the high throughput acquisition of biomarker levels in G. fossarum exposed in four reference and 13 contaminated sites, we analyzed the individual responses of 38 peptides reporting for 25 proteins of interest in 170 organisms. Responses obtained in contaminated sites included inductions of vitellogenin-like proteins in male organisms, inductions of Na+K+/ATPases, and strong inhibitions of molt-related proteins such as chitinase and JHE-carboxylesterase. Proteins from detoxification and immunity processes were also found modulated in abundance. Summarizing, the results presented here show that the SRM strategy developed for multibiomarker measurement paves a very promising way to define multiple indicators of the health status of sentinel organisms for environmental hazard assessment.


Asunto(s)
Anfípodos , Monitoreo del Ambiente , Proteómica , Animales , Bioensayo , Masculino , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...