Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1342761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505707

RESUMEN

Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.

2.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220162, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122213

RESUMEN

Skeletal and cardiac muscle excitation-contraction coupling commences with Nav1.4/Nav1.5-mediated, surface and transverse (T-) tubular, action potential generation. This initiates feedforward, allosteric or Ca2+-mediated, T-sarcoplasmic reticular (SR) junctional, voltage sensor-Cav1.1/Cav1.2 and ryanodine receptor-RyR1/RyR2 interaction. We review recent structural, physiological and translational studies on possible feedback actions of the resulting SR Ca2+ release on Nav1.4/Nav1.5 function in native muscle. Finite-element modelling predicted potentially regulatory T-SR junctional [Ca2+]TSR domains. Nav1.4/Nav1.5, III-IV linker and C-terminal domain structures included Ca2+ and/or calmodulin-binding sites whose mutations corresponded to specific clinical conditions. Loose-patch-clamped native murine skeletal muscle fibres and cardiomyocytes showed reduced Na+ currents (INa) following SR Ca2+ release induced by the Epac and direct RyR1/RyR2 activators, 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate and caffeine, abrogated by the RyR inhibitor dantrolene. Conversely, dantrolene and the Ca2+-ATPase inhibitor cyclopiazonic acid increased INa. Experimental, catecholaminergic polymorphic ventricular tachycardic RyR2-P2328S and metabolically deficient Pgc1ß-/- cardiomyocytes also showed reduced INa accompanying [Ca2+]i abnormalities rescued by dantrolene- and flecainide-mediated RyR block. Finally, hydroxychloroquine challenge implicated action potential (AP) prolongation in slowing AP conduction through modifying Ca2+ transients. The corresponding tissue/organ preparations each showed pro-arrhythmic, slowed AP upstrokes and conduction velocities. We finally extend discussion of possible Ca2+-mediated effects to further, Ca2+, K+ and Cl-, channel types. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Dantroleno , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/genética , Dantroleno/farmacología , Retroalimentación , Músculo Esquelético , Potenciales de Acción , Calcio/metabolismo
3.
J Cell Physiol ; 238(6): 1354-1367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042220

RESUMEN

The voltage-gated sodium channel NaV 1.7 is involved in various pain phenotypes and is physiologically regulated by the NaV -ß3-subunit. Venom toxins ProTx-II and OD1 modulate NaV 1.7 channel function and may be useful as therapeutic agents and/or research tools. Here, we use patch-clamp recordings to investigate how the ß3-subunit can influence and modulate the toxin-mediated effects on NaV 1.7 function, and we propose a putative binding mode of OD1 on NaV 1.7 to rationalise its activating effects. The inhibitor ProTx-II slowed the rate of NaV 1.7 activation, whilst the activator OD1 reduced the rate of fast inactivation and accelerated recovery from inactivation. The ß3-subunit partially abrogated these effects. OD1 induced a hyperpolarising shift in the V1/2 of steady-state activation, which was not observed in the presence of ß3. Consequently, OD1-treated NaV 1.7 exhibited an enhanced window current compared with OD1-treated NaV 1.7-ß3 complex. We identify candidate OD1 residues that are likely to prevent the upward movement of the DIV S4 helix and thus impede fast inactivation. The binding sites for each of the toxins and the predicted location of the ß3-subunit on the NaV 1.7 channel are distinct. Therefore, we infer that the ß3-subunit influences the interaction of toxins with NaV 1.7 via indirect allosteric mechanisms. The enhanced window current shown by OD1-treated NaV 1.7 compared with OD1-treated NaV 1.7-ß3 is discussed in the context of differing cellular expressions of NaV 1.7 and the ß3-subunit in dorsal root ganglion (DRG) neurons. We propose that ß3, as the native binding partner for NaV 1.7 in DRG neurons, should be included during screening of molecules against NaV 1.7 in relevant analgesic discovery campaigns.


Asunto(s)
Ponzoñas , Canales de Sodio Activados por Voltaje , Humanos , Ponzoñas/uso terapéutico , Péptidos/farmacología , Péptidos/uso terapéutico , Analgésicos/uso terapéutico , Dolor/tratamiento farmacológico
4.
J Physiol ; 601(5): 923-940, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354758

RESUMEN

In cardiac myocytes, the voltage-gated sodium channel NaV 1.5 opens in response to membrane depolarisation and initiates the action potential. The NaV 1.5 channel is typically associated with regulatory ß-subunits that modify gating and trafficking behaviour. These ß-subunits contain a single extracellular immunoglobulin (Ig) domain, a single transmembrane α-helix and an intracellular region. Here we focus on the role of the ß1 and ß3 subunits in regulating NaV 1.5. We catalogue ß1 and ß3 domain specific mutations that have been associated with inherited cardiac arrhythmia, including Brugada syndrome, long QT syndrome, atrial fibrillation and sudden death. We discuss how new structural insights into these proteins raises new questions about physiological function.


Asunto(s)
Arritmias Cardíacas , Síndrome de QT Prolongado , Humanos , Potenciales de Acción/fisiología , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canales de Sodio/metabolismo , Subunidades de Proteína
5.
Front Physiol ; 14: 1280151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235384

RESUMEN

Introduction: In addition to gap junction conduction, recent reports implicate possible ephaptic coupling contributions to action potential (AP) propagation between successive adjacent cardiomyocytes. Here, AP generation in an active cell, withdraws Na+ from, creating a negative potential within, ephaptic spaces between the participating membranes, activating the initially quiescent neighbouring cardiomyocyte. However, sustainable ephaptic transmission requires subsequent complete recovery of the ephaptic charge difference. We explore physical contributions of passive electrodiffusive ion exchange with the remaining extracellular space to this recovery for the first time. Materials and Methods: Computational, finite element, analysis examined limiting, temporal and spatial, ephaptic [Na+], [Cl-], and the consequent Gaussian charge differences and membrane potential recovery patterns following a ΔV∼130 mV AP upstroke at physiological (37°C) temperatures. This incorporated Nernst-Planck formalisms into equations for the time-dependent spatial concentration gradient profiles. Results: Mammalian atrial, ventricular and purkinje cardiomyocyte ephaptic junctions were modelled by closely apposed circularly symmetric membranes, specific capacitance 1 µF cm-2, experimentally reported radii a = 8,000, 12,000 and 40,000 nm respectively and ephaptic axial distance w = 20 nm. This enclosed an ephaptic space containing principal ions initially at normal extracellular [Na+] = 153.1 mM and [Cl-] = 145.8 mM, respective diffusion coefficients D Na = 1.3 × 109 and D Cl = 2 × 109 nm2s-1. Stable, concordant computational solutions were confirmed exploring ≤1,600 nm mesh sizes and Δt≤0.08 ms stepsize intervals. The corresponding membrane voltage profile changes across the initially quiescent membrane were obtainable from computed, graphically represented a and w-dependent ionic concentration differences adapting Gauss's flux theorem. Further simulations explored biological variations in ephaptic dimensions, membrane anatomy, and diffusion restrictions within the ephaptic space. Atrial, ventricular and Purkinje cardiomyocytes gave 40, 180 and 2000 ms 99.9% recovery times, with 720 or 360 ms high limits from doubling ventricular radius or halving diffusion coefficient. Varying a, and D Na and D Cl markedly affected recovery time-courses with logarithmic and double-logarithmic relationships, Varying w exerted minimal effects. Conclusion: We thereby characterise the properties of, and through comparing atrial, ventricular and purkinje recovery times with interspecies in vivo background cardiac cycle duration data, (blue whale ∼2000, human∼90, Etruscan shrew, ∼40 ms) can determine physical limits to, electrodiffusive contributions to ephaptic recovery.

6.
J Gen Physiol ; 154(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35713932

RESUMEN

Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.


Asunto(s)
Flecainida , Taquicardia Ventricular , Antiarrítmicos/farmacología , Calcio/metabolismo , Flecainida/metabolismo , Flecainida/farmacología , Humanos , Miocitos Cardíacos/metabolismo , Rianodina/metabolismo , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sodio/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
7.
Physiol Rep ; 9(19): e15043, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34617689

RESUMEN

The Scn5a gene encodes the major pore-forming Nav 1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav 1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav 1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/- genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/- animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS.


Asunto(s)
Síndrome de Brugada/genética , Corazón/fisiopatología , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Transcriptoma , Animales , Síndrome de Brugada/metabolismo , Síndrome de Brugada/fisiopatología , Fenómenos Electrofisiológicos/fisiología , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
8.
Biochem Soc Trans ; 49(5): 1941-1961, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643236

RESUMEN

Voltage-dependent Na+ channel activation underlies action potential generation fundamental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity, surveying their structural, genetic and cellular and functional implications, translating these to their possible clinical importance. In addition to phosphorylation sites, both Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the Ca2+-sensor calmodulin in their inactivating III-IV linker and C-terminal domains (CTD), where mutations are associated with a range of skeletal and cardiac muscle diseases. We summarize in vitro cell-attached patch clamp studies reporting correspondingly diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax) and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regulated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal and cardiac myocytes. They correspondingly reduced action potential upstroke rates and conduction velocities, causing pro-arrhythmic effects in intact perfused hearts. Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic polymorphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-arrhythmic phenotypes following catecholaminergic challenge. These accompanied reductions in action potential conduction velocities. The latter were reversed by flecainide at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally explore the relevance of these mechanisms in further genetic paradigms for commoner metabolic and structural cardiac disease.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Activación del Canal Iónico , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Flecainida/uso terapéutico , Humanos , Ratones , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Resultado del Tratamiento , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
9.
Cells ; 10(8)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34440870

RESUMEN

Cardiac ryanodine receptor (RyR2) mutations are implicated in the potentially fatal catecholaminergic polymorphic ventricular tachycardia (CPVT) and in atrial fibrillation. CPVT has been successfully treated with flecainide monotherapy, with occasional notable exceptions. Reported actions of flecainide on cardiac sodium currents from mice carrying the pro-arrhythmic homozygotic RyR2-P2328S mutation prompted our explorations of the effects of flecainide on their RyR2 channels. Lipid bilayer electrophysiology techniques demonstrated a novel, paradoxical increase in RyR2 activity. Preceding flecainide exposure, channels were mildly activated by 1 mM luminal Ca2+ and 1 µM cytoplasmic Ca2+, with open probabilities (Po) of 0.03 ± 0.01 (wild type, WT) or 0.096 ± 0.024 (P2328S). Open probability (Po) increased within 0.5 to 3 min of exposure to 0.5 to 5.0 µM cytoplasmic flecainide, then declined with higher concentrations of flecainide. There were no such increases in a subset of high Po channels with Po ≥ 0.08, although Po then declined with ≥5 µM (WT) or ≥50 µM flecainide (P2328S). On average, channels with Po < 0.08 were significantly activated by 0.5 to 10 µM of flecainide (WT) or 0.5 to 50 µM of flecainide (P2328S). These results suggest that flecainide can bind to separate activation and inhibition sites on RyR2, with activation dominating in lower activity channels and inhibition dominating in more active channels.


Asunto(s)
Arritmias Cardíacas/metabolismo , Flecainida/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacología , Arritmias Cardíacas/genética , Calcio/metabolismo , Flecainida/metabolismo , Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/metabolismo , Potenciales de la Membrana , Ratones , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
10.
Ann N Y Acad Sci ; 1478(1): 63-74, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32713021

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is associated with mutations in the cardiac ryanodine receptor (RyR2). These result in stress-induced ventricular arrhythmic episodes, with clinical symptoms and prognosis reported more severe in male than female patients. Murine homozygotic RyR2-P2328S (RyR2S/S ) hearts replicate the proarrhythmic CPVT phenotype of abnormal sarcoplasmic reticular Ca2+ leak and disrupted Ca2+ homeostasis. In addition, RyR2S/S hearts show decreased myocardial action potential conduction velocities (CV), all features implicated in arrhythmic trigger and substrate. The present studies explored for independent and interacting effects of RyR2S/S genotype and sex on expression levels of molecular determinants of Ca2+ homeostasis (CASQ2, FKBP12, SERCA2a, NCX1, and CaV 1.2) and CV (NaV 1.5, Connexin (Cx)-43, phosphorylated-Cx43, and TGF-ß1) in mice. Expression levels of Ca2+ homeostasis proteins were not altered, hence implicating abnormal RyR2 function alone in disrupted cytosolic Ca2+ homeostasis. Furthermore, altered NaV 1.5, phosphorylated Cx43, and TGF-ß1 expression were not implicated in the development of slowed CV. By contrast, decreased Cx43 expression correlated with slowed CV, in female, but not male, RyR2S/S mice. The CV changes may reflect acute actions of the increased cytosolic Ca2+ on NaV 1.5 and Cx43 function.


Asunto(s)
Conexina 43/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Femenino , Genotipo , Humanos , Masculino , Ratones , Mutación/genética , Miocardio/patología , Taquicardia Ventricular/patología , Factor de Crecimiento Transformador beta1/genética
11.
Biomolecules ; 10(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630316

RESUMEN

Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory ß-subunits (ß1-4) bind to the Nav channel α-subunits. Previous work has emphasised the ß-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on ß-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the ß-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between ß1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.


Asunto(s)
Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Subunidades beta de Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción , Animales , Adhesión Celular , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.5/química , Subunidades de Proteína/metabolismo , Subunidades beta de Canales de Sodio Activados por Voltaje/química
12.
FASEB J ; 34(3): 3537-3553, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950564

RESUMEN

Voltage-gated sodium channels comprise an ion-selective α-subunit and one or more associated ß-subunits. The ß3-subunit (encoded by the SCN3B gene) is an important physiological regulator of the heart-specific sodium channel, Nav1.5. We have previously shown that when expressed alone in HEK293F cells, the full-length ß3-subunit forms trimers in the plasma membrane. We extend this result with biochemical assays and use the proximity ligation assay (PLA) to identify oligomeric ß3-subunits, not just at the plasma membrane, but throughout the secretory pathway. We then investigate the corresponding clustering properties of the α-subunit and the effects upon these of the ß3-subunits. The oligomeric status of the Nav1.5 α-subunit in vivo, with or without the ß3-subunit, has not been previously investigated. Using super-resolution fluorescence imaging, we show that under conditions typically used in electrophysiological studies, the Nav1.5 α-subunit assembles on the plasma membrane of HEK293F cells into spatially localized clusters rather than individual and randomly dispersed molecules. Quantitative analysis indicates that the ß3-subunit is not required for this clustering but ß3 does significantly change the distribution of cluster sizes and nearest-neighbor distances between Nav1.5 α-subunits. However, when assayed by PLA, the ß3-subunit increases the number of PLA-positive signals generated by anti-(Nav1.5 α-subunit) antibodies, mainly at the plasma membrane. Since PLA can be sensitive to the orientation of proteins within a cluster, we suggest that the ß3-subunit introduces a significant change in the relative alignment of individual Nav1.5 α-subunits, but the clustering itself depends on other factors. We also show that these structural and higher-order changes induced by the ß3-subunit do not alter the degree of electrophysiological gating cooperativity between Nav1.5 α-subunits. Our data provide new insights into the role of the ß3-subunit and the supramolecular organization of sodium channels, in an important model cell system that is widely used to study Nav channel behavior.


Asunto(s)
Membrana Celular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Subunidades de Proteína/metabolismo , Electrofisiología , Células HEK293 , Humanos , Inmunoprecipitación , Cinética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Técnicas de Placa-Clamp , Subunidades de Proteína/química , Subunidades de Proteína/genética
13.
J Biol Chem ; 294(51): 19752-19763, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31659116

RESUMEN

The auxiliary ß3-subunit is an important functional regulator of the cardiac sodium channel Nav1.5, and some ß3 mutations predispose individuals to cardiac arrhythmias. The ß3-subunit uses its transmembrane α-helix and extracellular domain to bind to Nav1.5. Here, we investigated the role of an unusually located and highly conserved glutamic acid (Glu-176) within the ß3 transmembrane region and its potential for functionally synergizing with the ß3 extracellular domain (ECD). We substituted Glu-176 with lysine (E176K) in the WT ß3-subunit and in a ß3-subunit lacking the ECD. Patch-clamp experiments indicated that the E176K substitution does not affect the previously observed ß3-dependent depolarizing shift of V½ of steady-state inactivation but does attenuate the accelerated recovery from inactivation conferred by the WT ß3-subunit. Removal of the ß3-ECD abrogated both the depolarizing shift of steady-state inactivation and the accelerated recovery, irrespective of the presence or absence of the Glu-176 residue. We found that steady-state inactivation and recovery from inactivation involve movements of the S4 helices within the DIII and DIV voltage sensors in response to membrane potential changes. Voltage-clamp fluorometry revealed that the E176K substitution alters DIII voltage sensor dynamics without affecting DIV. In contrast, removal of the ECD significantly altered the dynamics of both DIII and DIV. These results imply distinct roles for the ß3-Glu-176 residue and the ß3-ECD in regulating the conformational changes of the voltage sensors that determine channel inactivation and recovery from inactivation.


Asunto(s)
Regulación de la Expresión Génica , Ácido Glutámico/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/genética , Animales , Humanos , Activación del Canal Iónico , Cinética , Lisina/química , Potenciales de la Membrana , Mutagénesis , Mutación , Oocitos/metabolismo , Técnicas de Placa-Clamp , Dominios Proteicos , Estructura Secundaria de Proteína , Xenopus
14.
J Cell Sci ; 132(10)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31028179

RESUMEN

Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 µM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Arritmias Cardíacas/metabolismo , Fibrilación Atrial/metabolismo , Activación del Canal Iónico/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Arritmias Cardíacas/genética , Fibrilación Atrial/genética , Calcio/metabolismo , Citoplasma/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/genética
15.
Ann N Y Acad Sci ; 1433(1): 18-28, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29846007

RESUMEN

Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP]i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated Gs -protein activation known to increase [cAMP]i , unaccompanied by the [Ca2+ ]i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed.


Asunto(s)
AMP Cíclico/metabolismo , Osteoclastos/metabolismo , Animales , Conservadores de la Densidad Ósea/farmacología , Resorción Ósea/metabolismo , Calcitonina/metabolismo , Señalización del Calcio , Movimiento Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Difosfonatos/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Integrinas/metabolismo , Modelos Biológicos , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología , Sistemas de Mensajero Secundario , Transducción de Señal , Investigación Biomédica Traslacional , Proteínas de Unión al GTP rap1/metabolismo
16.
Clin Exp Pharmacol Physiol ; 45(2): 174-186, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28949414

RESUMEN

Increasing evidence implicates chronic energetic dysfunction in human cardiac arrhythmias. Mitochondrial impairment through Pgc-1ß knockout is known to produce a murine arrhythmic phenotype. However, the cumulative effect of this with advancing age and its electrocardiographic basis have not been previously studied. Young (12-16 weeks) and aged (>52 weeks), wild type (WT) (n = 5 and 8) and Pgc-1ß-/- (n = 9 and 6), mice were anaesthetised and used for electrocardiographic (ECG) recordings. Time intervals separating successive ECG deflections were analysed for differences between groups before and after ß1-adrenergic (intraperitoneal dobutamine 3 mg/kg) challenge. Heart rates before dobutamine challenge were indistinguishable between groups. The Pgc-1ß-/- genotype however displayed compromised nodal function in response to adrenergic challenge. This manifested as an impaired heart rate response suggesting a functional defect at the level of the sino-atrial node, and a negative dromotropic response suggesting an atrioventricular conduction defect. Incidences of the latter were most pronounced in the aged Pgc-1ß-/- mice. Moreover, Pgc-1ß-/- mice displayed electrocardiographic features consistent with the existence of a pro-arrhythmic substrate. Firstly, ventricular activation was prolonged in these mice consistent with slowed action potential conduction and is reported here for the first time. Additionally, Pgc-1ß-/- mice had shorter repolarisation intervals. These were likely attributable to altered K+ conductance properties, ultimately resulting in a shortened QTc interval, which is also known to be associated with increased arrhythmic risk. ECG analysis thus yielded electrophysiological findings bearing on potential arrhythmogenicity in intact Pgc-1ß-/- systems in widespread cardiac regions.


Asunto(s)
Envejecimiento/fisiología , Electrocardiografía , Regulación de la Expresión Génica/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Ratones , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
17.
Br J Pharmacol ; 175(8): 1260-1278, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28369767

RESUMEN

Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/fisiopatología , Flecainida/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Animales , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Calcio/fisiología , Flecainida/uso terapéutico , Humanos , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología
18.
Sci Rep ; 7(1): 11070, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894151

RESUMEN

Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to ß-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following ß-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p < 0.001). Ventricles also showed increased fibrosis with age (p < 0.001). Age and Scn5a+/ΔKPQ interacted in increasing incidences of repolarisation alternans (p = 0.02). Dobutamine increased ventricular rate (p < 0.001) and reduced both atrioventricular conduction (PR segment-p = 0.02; PR interval-p = 0.02) and incidences of repolarisation alternans (p < 0.001) in all mice. However, in Scn5a+/ΔKPQ mice, dobutamine delayed the changes in ventricular repolarisation following corresponding increases in ventricular rate. The present findings implicate interactions between age and Scn5a+/ΔKPQ in prolonging ventricular activation, correlating them with fibrotic change for the first time, adding activation abnormalities to established recovery abnormalities in LQTS3. These findings, together with dynamic electrophysiological responses to ß-adrenergic challenge, have therapeutic implications for ageing LQTS patients.


Asunto(s)
Adrenérgicos/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Trastorno del Sistema de Conducción Cardíaco/diagnóstico , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/fisiopatología , Fenotipo , Animales , Modelos Animales de Enfermedad , Electrocardiografía , Fibrosis , Pruebas de Función Cardíaca , Humanos , Ratones
19.
Clin Exp Pharmacol Physiol ; 44(6): 686-692, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28316073

RESUMEN

Recent papers have attributed arrhythmic substrate in murine RyR2-P2328S hearts to reduced action potential (AP) conduction velocities (CV), reflecting acute functional inhibition and/or reduced expression of sodium channels. We explored for acute effects of direct exchange protein directly activated by cAMP (Epac)-mediated ryanodine receptor-2 (RyR2) activation on arrhythmic substrate and CV. Monophasic action potential (MAP) recordings demonstrated that initial steady (8 Hz) extrinsic pacing elicited ventricular tachycardia (VT) in 0 of 18 Langendorff-perfused wild-type mouse ventricles before pharmacological intervention. The Epac activator 8-CPT (8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate) (VT in 1 of 7 hearts), and the RyR2 blocker dantrolene, either alone (0 of 11) or with 8-CPT (0 of 9) did not then increase VT incidence (P>.05). Both progressively increased pacing rates and programmed extrasystolic (S2) stimuli similarly produced no VT in untreated hearts (n=20 and n=9 respectively). 8-CPT challenge then increased VT incidences (5 of 7 and 4 of 8 hearts respectively; P<.05). However, dantrolene, whether alone (0 of 10 and 1 of 13) or combined with 8-CPT (0 of 10 and 0 of 13) did not increase VT incidence relative to those observed in untreated hearts (P>.05). 8-CPT but not dantrolene, whether alone or combined with 8-CPT, correspondingly increased AP latencies (1.14±0.04 (n=7), 1.04±0.03 (n=10), 1.09±0.05 (n=8) relative to respective control values). In contrast, AP durations, conditions for 2:1 conduction block and ventricular effective refractory periods remained unchanged throughout. We thus demonstrate for the first time that acute RyR2 activation reversibly induces VT in specific association with reduced CV.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Preparación de Corazón Aislado , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/fisiopatología , Potenciales de Acción , Animales , Femenino , Ventrículos Cardíacos/fisiopatología , Masculino , Ratones , Periodo Refractario Electrofisiológico , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patología
20.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 38-45, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28024120

RESUMEN

Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias, particularly after 40 years of age, consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing wild type (WT) murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.


Asunto(s)
Potenciales de Acción/genética , Envejecimiento/genética , Frecuencia Cardíaca/genética , Síndrome de QT Prolongado/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Factores de Edad , Envejecimiento/metabolismo , Animales , Predisposición Genética a la Enfermedad , Humanos , Incidencia , Cinética , Síndrome de QT Prolongado/epidemiología , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Fenotipo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...