Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(23): 6295-6308, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37325146

RESUMEN

A large number of novel phytochromes named cyanobacteriochromes (CBCRs) have been recently identified. CBCRs appear to be attractive for further in-depth studies as paradigms for phytochromes because of their related photochemistry, but simpler domain architecture. Elucidating the mechanisms of spectral tuning for the bilin chromophore down to the molecular/atomic level is a prerequisite to design fine-tuned photoswitches for optogenetics. Several explanations for the blue shift during photoproduct formation associated with the red/green CBCRs represented by Slr1393g3 have been developed. There are, however, only sparse mechanistic data concerning the factors controlling stepwise absorbance changes along the reaction pathways from the dark state to the photoproduct and vice versa in this subfamily. Conventional cryotrapping of photocycle intermediates of phytochromes has proven experimentally intractable for solid-state NMR spectroscopy within the probe. Here, we have developed a simple method to circumvent this hindrance by incorporating proteins into trehalose glasses which allows four photocycle intermediates of Slr1393g3 to be isolated for NMR use. In addition to identifying the chemical shifts and chemical shift anisotropy principal values of selective chromophore carbons in various photocycle states, we generated QM/MM models of the dark state and photoproduct as well as of the primary intermediate of the backward-reaction. We find the motion of all three methine bridges in both reaction directions but in different orders. These molecular events channel light excitation to drive distinguishable transformation processes. Our work also suggests that polaronic self-trapping of a conjugation defect by displacement of the counterion during the photocycle would play a role in tuning the spectral properties of both the dark state and photoproduct.

2.
J Phys Condens Matter ; 35(27)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36996840

RESUMEN

Hexagonal boron nitride (hBN), sometimes referred to as white graphene, receives growing interest in the scientific community, especially when combined into van der Waals (vdW) homo- and heterostacks, in which novel and interesting phenomena may arise. hBN is also commonly used in combination with two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs). The realization of hBN-encapsulated TMDC homo- and heterostacks can indeed offer opportunities to investigate and compare TMDC excitonic properties in various stacking configurations. In this work, we investigate the optical response at the micrometric scale of mono- and homo-bilayer WS2grown by chemical vapor deposition and encapsulated between two single layers of hBN. Imaging spectroscopic ellipsometry is exploited to extract the local dielectric functions across one single WS2flake and detect the evolution of excitonic spectral features from monolayer to bilayer regions. Exciton energies undergo a redshift by passing from hBN-encapsulated single layer to homo-bilayer WS2, as also confirmed by photoluminescence spectra. Our results can provide a reference for the study of the dielectric properties of more complex systems where hBN is combined with other 2D vdW materials into heterostructures and are stimulating towards the investigation of the optical response of other technologically-relevant heterostacks.

3.
ACS Appl Mater Interfaces ; 14(33): 38013-38020, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35960822

RESUMEN

Polyalanine molecules (PA) with an α-helix conformation have recently attracted a great deal of interest, as the propagation of electrons through the chiral backbone structure comes along with spin polarization of the transmitted electrons. By means of scanning tunneling microscopy and spectroscopy under ambient conditions, PA molecules adsorbed on surfaces of epitaxial magnetic Al2O3/Pt/Au/Co/Au nanostructures with perpendicular anisotropy were studied. Thereby, a correlation between the PA molecules ordering at the surface with the electron tunneling across this hybrid system as a function of the substrate magnetization orientation as well as the coverage density and helicity of the PA molecules was observed. The highest spin polarization values, P, were found for well-ordered self-assembled monolayers and with a defined chemical coupling of the molecules to the magnetic substrate surface, showing that the current-induced spin selectivity is a cooperative effect. Thereby, P deduced from the electron transmission along unoccupied molecular orbitals of the chiral molecules is larger as compared to values derived from the occupied molecular orbitals. Apparently, the larger orbital overlap results in a higher electron mobility, yielding a higher P value. By switching the magnetization direction of the Co layer, it was demonstrated that the non-spin-polarized STM can be used to study chiral molecules with a submolecular resolution, to detect properties of buried magnetic layers and to detect the spin polarization of the molecules from the change in the magnetoresistance of such hybrid structures.

4.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35683672

RESUMEN

Bismuth compounds are of growing interest with regard to potential applications in catalysis, medicine, and electronics, for which their environmentally benign nature is one of the key factors. One thing that currently hampers the further development of bismuth oxido-based materials, however, is the often low solubility of the precursors, which makes targeted immobilisation on substrates challenging. We present an approach towards the solubilisation of bismuth oxido clusters by introducing an amino carboxylate as a functional group. For this purpose, the bismuth oxido cluster [Bi38O45(NO3)20(dmso)28](NO3)4·4dmso (dmso = dimethyl sulfoxide) was reacted with the sodium salt of tert-butyloxycabonyl (Boc)-protected phenylalanine (L-Phe) to obtain the soluble and chiral nanocluster [Bi38O45(Boc-Phe-O)24(dmso)9]. The exchange of the nitrates by the amino carboxylates was proven by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, as well as elemental analysis and X-ray photoemission spectroscopy. The solubility of the bismuth oxido cluster in a protic as well as an aprotic polar organic solvent and the growth mode of the clusters upon spin, dip, and drop coating on gold surfaces were studied by a variety of microscopy, as well as spectroscopic techniques. In all cases, the bismuth oxido clusters form crystalline agglomerations with size, height, and distribution on the substrate that can be controlled by the choice of the solvent and of the deposition method.

5.
ACS Appl Mater Interfaces ; 13(49): 59497-59510, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34870974

RESUMEN

Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical film thickness and measurement temperature, bimetallic Mn-based alloys and transition-metal oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferromagnetic (FM)/AFM-based heterostructures can result in unusual magnetic and magnetotransport phenomena. Here, we integrate chemically disordered AFM γ-IrMn3 thin films with coexisting AFM phases into complex exchange coupled MgO(001)/γ-Ni3Fe/γ-IrMn3/γ-Ni3Fe/CoO heterostructures and study the structural, magnetic, and magnetotransport properties in various magnetic field cooling states. In particular, we unveil the impact of rotating the relative orientation of the thermally disordered and reversible AFM moments with respect to the irreversible AFM moments on the magnetic and magnetotransport properties of the exchange coupled heterostructures. We further reveal that the persistence of thermally disordered and reversible AFM moments is crucial for achieving highly tunable magnetic properties and multilevel magnetoresistance states. We anticipate that the presented approach and the heterostructure architecture can be utilized in future spintronic devices to manipulate the thermally disordered and reversible AFM moments at the nanoscale.

6.
Sci Rep ; 11(1): 14104, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238949

RESUMEN

Local crystallization of ferromagnetic layers is crucial in the successful realization of miniaturized tunneling magnetoresistance (TMR) devices. In the case of Co-Fe-B TMR devices, used most successfully so far in applications and devices, Co-Fe-B layers are initially deposited in an amorphous state and annealed post-deposition to induce crystallization in Co-Fe, thereby increasing the device performance. In this work, first direct proof of locally triggered crystallization of 10 nm thick Co-Fe-B films by laser irradiation is provided by means of X-ray diffraction (XRD) using synchrotron radiation. A comparison with furnace annealing is performed for benchmarking purposes, covering different annealing parameters, including temperature and duration in the case of furnace annealing, as well as laser intensity and scanning speed for the laser annealing. Films of Co-Fe-B with different stoichiometry sandwiched between a Ru and a Ta or MgO layer were systematically assessed by XRD and SQUID magnetometry in order to elucidate the crystallization mechanisms. The transformation of Co-Fe-B films from amorphous to crystalline is revealed by the presence of pronounced CoFe(110) and/or CoFe(200) reflexes in the XRD θ-2θ scans, depending on the capping layer. For a certain window of parameters, comparable crystallization yields are obtained with furnace and laser annealing. Samples with an MgO capping layer required a slightly lower laser intensity to achieve equivalent Co-Fe crystallization yields, highlighting the potential of laser annealing to locally enhance the TMR ratio.

7.
J Phys Condens Matter ; 32(5): 055702, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31604341

RESUMEN

We report the optical and magneto-optical properties of amorphous and crystalline Co60Fe20B20 films with thicknesses in the range of 10 nm to 20 nm characterized using spectroscopy ellipsometry (SE) and magneto-optical Kerr effect (MOKE) spectroscopy. We derived the spectral dependence of the dielectric tensor from experimental data for samples prior and after annealing in vacuum. The features of the dielectric function can be directly related to the transitions between electronic states and the observed changes upon annealing can be ascribed to an increase of the crystalline ordering of CoFeB.

8.
J Colloid Interface Sci ; 520: 101-111, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29529457

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have received much attention in drug and biomolecule delivery systems. Here, we report a delivery system using the combination of a magnetic field and the relatively biocompatible composite particles of poly(lactic-co-glycolic acid) and SPIONs (SPION-PLGA particles) for protein delivery to bone-marrow derived primary dendritic cells (BM-DCs). SPIONs with the diameter of ∼10 nm were synthesized via thermal decomposition of iron(III) oleate. The SPIONs and bovine serum albumin (BSA) were encapsulated in PLGA particles of two different diameters, 300 and 500 nm. The obtained SPIONs-PLGA nanocomposites exhibited superparamagnetic character, showed low cytotoxicity and were well taken up in macrophage and BM-DCs under an external magnetic field. In addition, the nanocomposites were tested for immune induction in BM-DCs. This combined SPION-PLGA carrier and an external magnetic field can significantly enhance BM-DC maturation by upregulating MHC II, CD80 and CD86 expression. Immune response induction by this strategy is verified through a significant upregulation of the IL-12 and IFN-γ production. Moreover, no activation of BM-DCs to secrete pro-inflammatory cytokine TNF-α was observed for all particles. We anticipate these findings to be a starting point for vaccine researches involving the combined magnetic field and SPION-PLGA composite particles.


Asunto(s)
Citocinas/metabolismo , Células Dendríticas/inmunología , Sistemas de Liberación de Medicamentos , Compuestos Férricos/química , Ácido Láctico/química , Nanopartículas de Magnetita/química , Ácido Poliglicólico/química , Albúmina Sérica Bovina/administración & dosificación , Animales , Bovinos , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Portadores de Fármacos , Femenino , Ratones , Ratones Endogámicos BALB C , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/inmunología
9.
Beilstein J Nanotechnol ; 8: 2464-2466, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234581
10.
Beilstein J Nanotechnol ; 8: 1786-1800, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28904840

RESUMEN

The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.

11.
Beilstein J Nanotechnol ; 8: 1375-1387, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900593

RESUMEN

The chemisorption of magnetically bistable transition metal complexes on planar surfaces has recently attracted increased scientific interest due to its potential application in various fields, including molecular spintronics. In this work, the synthesis of mixed-ligand complexes of the type [NiII2L(L')](ClO4), where L represents a 24-membered macrocyclic hexaazadithiophenolate ligand and L' is a ω-mercapto-carboxylato ligand (L' = HS(CH2)5CO2- (6), HS(CH2)10CO2- (7), or HS(C6H4)2CO2- (8)), and their ability to adsorb on gold surfaces is reported. Besides elemental analysis, IR spectroscopy, electrospray ionization mass spectrometry (ESIMS), UV-vis spectroscopy, and X-ray crystallography (for 6 and 7), the compounds were also studied by temperature-dependent magnetic susceptibility measurements (for 7 and 8) and (broken symmetry) density functional theory (DFT) calculations. An S = 2 ground state is demonstrated by temperature-dependent susceptibility and magnetization measurements, achieved by ferromagnetic coupling between the spins of the Ni(II) ions in 7 (J = +22.3 cm-1) and 8 (J = +20.8 cm-1; H = -2JS1S2). The reactivity of complexes 6-8 is reminiscent of that of pure thiolato ligands, which readily chemisorb on Au surfaces as verified by contact angle, atomic force microscopy (AFM) and spectroscopic ellipsometry measurements. The large [Ni2L] tail groups, however, prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported.

12.
Beilstein J Nanotechnol ; 8: 1502-1507, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900604

RESUMEN

We report light-induced negative organic magnetoresistance (OMAR) measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE) having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET) substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron-hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

13.
Beilstein J Nanotechnol ; 8: 975-981, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28546892

RESUMEN

Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm) were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA) for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated.

14.
Nanotechnology ; 28(19): 195303, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28296643

RESUMEN

Organic-inorganic hybrid electronic devices (HEDs) offer opportunities for functionalities that are not easily obtainable with either organic or inorganic materials individually. In the strive for down-scaling the channel length in planar geometry HEDs, the best results were achieved with electron beam lithography or nanoimprint lithography. Their application on the wafer level is, however, cost intensive and time consuming. Here, we propose trench isolated electrode (TIE) technology as a fast, cost effective, wafer-level approach for the fabrication of planar HEDs with electrode gaps in the range of 100 nm. We demonstrate that the formation of the organic channel can be realized by deposition from solution as well as by the thermal evaporation of organic molecules. To underline one key feature of planar HED-TIEs, namely full accessibility of the active area of the devices by external stimuli such as light, 6,13-bis (triisopropylsilylethynyl) (TIPS)-pentacene/Au HED-TIEs are successfully tested for possible application as hybrid photodetectors in the visible spectral range.

15.
Adv Mater ; 28(15): 2971-7, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26890153

RESUMEN

Organic diodes consisting of molecular nano-pyramid structures sandwiched between metal and strained nano-membrane electrodes are created. The robust and smooth contacts provided by self-curled metal layers render the molecular nano-pyramids efficent channels for detecting nitrogen dioxide airflow.

16.
Sci Rep ; 5: 8999, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25758040

RESUMEN

Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

17.
Opt Express ; 22(15): 18454-63, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25089464

RESUMEN

Polar magneto-optical Kerr effect (MOKE) spectroscopy in the energy range from 1.75 eV to 5 eV at different magnetic field strength was applied to study Ni nanostructures formed on rubrene nanoislands. The magnetic hysteresis curves measured by MOKE change the shape depending on the photon energy and therefore deviate from those measured by superconducting quantum interference device (SQUID) magnetometry. Similar optical effects were previously observed in inorganic heterostructures. Our observations show that it correlates to the change in lineshape of the MOKE rotation and ellipticity spectra as a function of magnetic field strength. We show that this spectral dependence on magnetic field can be exploited to separate the contributions of two magnetic components to the magneto-optical spectra and hysteresis. The proposed model does not require the a priori knowledge of the (magneto-)optical constants of the heterostructure and its components.

18.
J Phys Condens Matter ; 26(10): 104201, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24552846

RESUMEN

The optical constants together with the magneto-optical Voigt constants of several phthalocyanine (Pc) and methoxy functionalized tetraphenylporphyrin (TMPP) thin films prepared on silicon substrates are presented. The materials investigated are MePc with Me = Fe, Co, Ni, Cu, Zn and MeTMPP with Me = Cu, Ni. We also compared our results to the metal-free H2Pc, H2TPP and H2TMPP. The experimental results will be supported by electronic structure calculations based on density functional theory (DFT) and interpreted using the perimeter model initially proposed by Platt. The model allows for qualitative understanding of the forbidden character of transitions in planar, aromatic molecules, and is able to qualify differences between Pc and TMPP type materials.


Asunto(s)
Indoles/química , Campos Magnéticos , Membranas Artificiales , Metales/química , Modelos Químicos , Porfirinas/química , Simulación por Computador , Impedancia Eléctrica , Isoindoles , Ensayo de Materiales , Refractometría
19.
Beilstein J Nanotechnol ; 5: 2070-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551034

RESUMEN

The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I-V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.

20.
Chemistry ; 19(24): 7787-801, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23595564

RESUMEN

A new strategy for the fixation of redox-active dinickel(II) complexes with high-spin ground states to gold surfaces was developed. The dinickel(II) complex [Ni2L(Cl)]ClO4 (1ClO4), in which L(2-) represents a 24-membered macrocyclic hexaaza-dithiophenolate ligand, reacts with ambidentate 4-(diphenylphosphino)benzoate (dppba) to form the carboxylato-bridged complex [Ni2L(dppba)](+), which can be isolated as an air-stable perchlorate [Ni2L(dppba)]ClO4 (2ClO4) or tetraphenylborate [Ni2L(dppba)]BPh4 (2BPh4) salt. The auration of 2ClO4 was probed on a molecular level, by reaction with AuCl, which leads to the monoaurated Ni(II)2Au(I) complex [Ni(II)2L(dppba)Au(I)Cl]ClO4 (3ClO4). Metathesis of 3ClO4 with NaBPh4 produces [Ni(II)2L(dppba)Au(I)Ph]BPh4 (4BPh4), in which the Cl(-) is replaced by a Ph(-) group. The complexes were fully characterized by ESI mass spectrometry, IR and UV/Vis spectroscopy, X-ray crystallography (2BPh4 and 4BPh4), cyclic voltammetry, SQUID magnetometry and HF-ESR spectroscopy. Temperature-dependent magnetic susceptibility measurements reveal a ferromagnetic coupling J = +15.9 and +17.9 cm(-1) between the two Ni(II) ions in 2ClO4 and 4BPh4 (H = -2 JS1S2). HF-ESR measurements yield a negative axial magnetic anisotropy (D<0), which implies a bistable (easy axis) magnetic ground state. The binding of the [Ni2L(dppba)]ClO4 complex to gold was ascertained by four complementary surface analytical methods: contact angle measurements, atomic-force microscopy, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry. The results indicate that the complexes are attached to the Au surface through coordinative Au-P bonds in a monolayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...