Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cardiovasc Eng Technol ; 14(5): 713-725, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37726567

RESUMEN

The impact of the distribution in space of the inlet velocity in the numerical simulations of the hemodynamics in the thoracic aorta is systematically investigated. A real healthy aorta geometry, for which in-vivo measurements are available, is considered. The distribution is modeled through a truncated cone shape, which is a suitable approximation of the real one downstream of a trileaflet aortic valve during the systolic part of the cardiac cycle. The ratio between the upper and the lower base of the truncated cone and the position of the center of the upper base are selected as uncertain parameters. A stochastic approach is chosen, based on the generalized Polynomial Chaos expansion, to obtain accurate response surfaces of the quantities of interest in the parameter space. The selected parameters influence the velocity distribution in the ascending aorta. Consequently, effects on the wall shear stress are observed, confirming the need to use patient-specific inlet conditions if interested in the hemodynamics of this region. The surface base ratio is globally the most important parameter. Conversely, the impact on the velocity and wall shear stress in the aortic arch and descending aorta is almost negligible.


Asunto(s)
Aorta Torácica , Bahías , Humanos , Aorta Torácica/fisiología , Hemodinámica , Aorta , Válvula Aórtica , Estrés Mecánico , Velocidad del Flujo Sanguíneo
2.
Micromachines (Basel) ; 13(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35208284

RESUMEN

The T-shaped micro-junction is among the most used geometry in microfluidic applications, and many design modifications of the channel walls have been proposed to enhance mixing. In this work, we investigate through numerical simulations the introduction of one pair of small rectangular cavities in the lateral walls of the mixing channel just downstream of the confluence region. The aim is to preserve the simple geometry that has contributed to spread the practical use of the T-shaped micro-junction while suggesting a modification that should, in principle, work jointly with the vortical structures present in the mixing channel, further enhancing their efficiency in mixing without significant additional pressure drops. The performance is analyzed in the different flow regimes occurring by increasing the Reynolds number. The cavities are effective in the two highly-mixed flow regimes, viz., the steady engulfment and the periodic asymmetric regimes. This presence does not interfere with the formation of the vortical structures that promote mixing by convection in these two regimes, but it further enhances the mixing of the inlet streams in the near-wall region of the mixing channel without any additional cost, leading to better performance than the classical configuration.

3.
Micromachines (Basel) ; 12(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673667

RESUMEN

Despite the very simple geometry and the laminar flow, T-shaped microreactors have been found to be characterized by different and complex steady and unsteady flow regimes, depending on the Reynolds number. In particular, flow unsteadiness modifies strongly the mixing process; however, little is known on how this change may affect the yield of a chemical reaction. In the present work, experiments and 3-dimensional numerical simulations are carried out jointly to analyze mixing and reaction in a T-shaped microreactor with the ultimate goal to investigate how flow unsteadiness affects the reaction yield. The onset of the unsteady asymmetric regime enhances the reaction yield by more than 30%; however, a strong decrease of the yield back to values typical of the vortex regime is observed when the flow undergoes a transition to the unsteady symmetric regime.

4.
Cardiovasc Eng Technol ; 9(4): 688-706, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30357714

RESUMEN

PURPOSE: Computational fluid dynamics (CFD) and 4D-flow magnetic resonance imaging (MRI) are synergically used for the simulation and the analysis of the flow in a patient-specific geometry of a healthy thoracic aorta. METHODS: CFD simulations are carried out through the open-source code SimVascular. The MRI data are used, first, to provide patient-specific boundary conditions. In particular, the experimentally acquired flow rate waveform is imposed at the inlet, while at the outlets the RCR parameters of the Windkessel model are tuned in order to match the experimentally measured fractions of flow rate exiting each domain outlet during an entire cardiac cycle. Then, the MRI data are used to validate the results of the hemodynamic simulations. As expected, with a rigid-wall model the computed flow rate waveforms at the outlets do not show the time lag respect to the inlet waveform conversely found in MRI data. We therefore evaluate the effect of wall compliance by using a linear elastic model with homogeneous and isotropic properties and changing the value of the Young's modulus. A stochastic analysis based on the polynomial chaos approach is adopted, which allows continuous response surfaces to be obtained in the parameter space starting from a few deterministic simulations. RESULTS: The flow rate waveform can be accurately reproduced by the compliant simulations in the ascending aorta; on the other hand, in the aortic arch and in the descending aorta, the experimental time delay can be matched with low values of the Young's modulus, close to the average value estimated from experiments. However, by decreasing the Young's modulus the underestimation of the peak flow rate becomes more significant. As for the velocity maps, we found a generally good qualitative agreement of simulations with MRI data. The main difference is that the simulations overestimate the extent of reverse flow regions or predict reverse flow when it is absent in the experimental data. Finally, a significant sensitivity to wall compliance of instantaneous shear stresses during large part of the cardiac cycle period is observed; the variability of the time-averaged wall shear stresses remains however very low. CONCLUSIONS: In summary, a successful integration of hemodynamic simulations and of MRI data for a patient-specific simulation has been shown. The wall compliance seems to have a significant impact on the numerical predictions; a larger wall elasticity generally improves the agreement with experimental data.


Asunto(s)
Aorta Torácica/diagnóstico por imagen , Hemodinámica , Angiografía por Resonancia Magnética/métodos , Modelos Cardiovasculares , Análisis Numérico Asistido por Computador , Modelación Específica para el Paciente , Aorta Torácica/fisiología , Velocidad del Flujo Sanguíneo , Adaptabilidad , Módulo de Elasticidad , Humanos , Interpretación de Imagen Asistida por Computador , Valor Predictivo de las Pruebas , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Procesos Estocásticos , Rigidez Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA