Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur Radiol ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033471

RESUMEN

BACKGROUND: Quantitative CT imaging, particularly iodine and calcium quantification, is an important CT-based biomarker. PURPOSE: This study quantifies sources of errors in quantitative CT imaging in both single-energy and spectral CT. MATERIALS AND METHODS: This work examines the theoretical relationship between CT numbers, linear attenuation coefficient, and material quantification. We derive four understandings: (1) CT numbers are not proportional with element mass in vivo, (2) CT numbers are proportional with element mass only when contained in a voxel of pure water, (3) iodine-water material decomposition is never accurate in vivo, and (4) for error-free material decomposition a voxel must only consist of the basis decomposition vectors. Misinterpretation-based errors are calculated using the National Institute of Standards and Technology (NIST) XCOM database for: tissue chemical compositions, clinical concentrations of hydroxyapatite (HAP), and iodine. Quantification errors are also demonstrated experimentally using phantoms. RESULTS: In single-energy CT, misinterpretation-induced errors for HAP density in adipose, muscle, lung, soft tissue, and blood ranged from 0-132%, i.e., a mass error of 0-749 mg/cm3. In spectral CT, errors with iodine in the same tissues resulted in a range of < 0.1-33% error, resulting in a mass error of < 0.1-1.2 mg/mL. CONCLUSION: Our work demonstrates material quantification is fundamentally limited when measured in vivo due to measurement conditions differing from assumed and the errors are at or above detection limits for bone mineral density (BMD) and spectral iodine quantification. To define CT-derived biomarkers, the errors we demonstrate should either be avoided or built into uncertainty bounds. CLINICAL RELEVANCE STATEMENT: Improving error bounds in quantitative CT biomarkers, specifically in iodine and BMD quantification, could lead to improvements in clinical care aspects based on quantitative CT. KEY POINTS: CT numbers are only proportional with element mass only when contained in a voxel of pure water, therefore iodine-water material decomposition is never accurate in vivo. Misinterpretation-induced errors ranged from 0-132% for HAP density and < 0.1-33% in spectral CT with iodine. For error-free material decomposition, a voxel must only consist of the basis decomposition vectors.

2.
J Thorac Imaging ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712920

RESUMEN

PURPOSE: We investigated spatial resolution loss away from isocenter for a prototype deep silicon photon-counting detector (PCD) CT scanner and compare with a clinical energy-integrating detector (EID) CT scanner. MATERIALS AND METHODS: We performed three scans on a wire phantom at four positions (isocenter, 6.7, 11.8, and 17.1 cm off isocenter). The acquisition modes were 120 kV EID CT, 120 kV high-definition (HD) EID CT, and 120 kV PCD CT. HD mode used double the projection view angles per rotation as the "regular" EID scan mode. The diameter of the wire was calculated by taking the full width of half max (FWHM) of a profile drawn over the radial and azimuthal directions of the wire. Change in wire diameter appearance was assessed by calculating the ratio of the radial and azimuthal diameter relative to isocenter. t tests were used to make pairwise comparisons of the wire diameter ratio with each acquisition and mean ratios' difference from unity. RESULTS: Deep silicon PCD CT had statistically smaller (P<0.05) changes in diameter ratio for both radial and azimuthal directions compared with both regular and HD EID modes and was not statistically different from unity (P<0.05). Maximum increases in FWMH relative to isocenter were 36%, 12%, and 1% for regular EID, HD EID, and deep silicon PCD, respectively. CONCLUSION: Deep silicon PCD CT exhibits less change in spatial resolution in both the radial and azimuthal directions compared with EID CT.

3.
AJR Am J Roentgenol ; 221(4): 539-547, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37255042

RESUMEN

BACKGROUND. Variable beam hardening based on patient size causes variation in CT numbers for energy-integrating detector (EID) CT. Photon-counting detector (PCD) CT more accurately determines effective beam energy, potentially improving CT number reliability. OBJECTIVE. The purpose of the present study was to compare EID CT and deep silicon PCD CT in terms of both the effect of changes in object size on CT number and the overall accuracy of CT numbers. METHODS. A phantom with polyethylene rings of varying sizes (mimicking patient sizes) as well as inserts of different materials was scanned on an EID CT scanner in single-energy (SE) mode (120-kV images) and in rapid-kilovoltage-switching dual-energy (DE) mode (70-keV images) and on a prototype deep silicon PCD CT scanner (70-keV images). ROIs were placed to measure the CT numbers of the materials. Slopes of CT number as a function of object size were computed. Materials' ideal CT number at 70 keV was computed using the National Institute of Standards and Technology XCOM Photon Cross Sections Database. The root mean square error (RMSE) between measured and ideal numbers was calculated across object sizes. RESULTS. Slope (expressed as Hounsfield units per centimeter) was significantly closer to zero (i.e., less variation in CT number as a function of size) for PCD CT than for SE EID CT for air (1.2 vs 2.4 HU/cm), water (-0.3 vs -1.0 HU/cm), iodine (-1.1 vs -4.5 HU/cm), and bone (-2.5 vs -10.1 HU/cm) and for PCD CT than for DE EID CT for air (1.2 vs 2.8 HU/cm), water (-0.3 vs -1.0 HU/cm), polystyrene (-0.2 vs -0.9 HU/cm), iodine (-1.1 vs -1.9 HU/cm), and bone (-2.5 vs -6.2 HU/cm) (p < .05). For all tested materials, PCD CT had the smallest RMSE, indicating CT numbers closest to ideal numbers; specifically, RMSE (expressed as Hounsfield units) for SE EID CT, DE EID CT, and PCD CT was 32, 44, and 17 HU for air; 7, 8, and 3 HU for water; 9, 10, and 4 HU for polystyrene; 31, 37, and 13 HU for iodine; and 69, 81, and 20 HU for bone, respectively. CONCLUSION. For numerous materials, deep silicon PCD CT, in comparison with SE EID CT and DE EID CT, showed lower CT number variability as a function of size and CT numbers closer to ideal numbers. CLINICAL IMPACT. Greater reliability of CT numbers for PCD CT is important given the dependence of diagnostic pathways on CT numbers.


Asunto(s)
Yodo , Silicio , Humanos , Reproducibilidad de los Resultados , Poliestirenos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Fotones , Agua
4.
J Phys Chem B ; 126(36): 6922-6935, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067064

RESUMEN

In an effort to combat rising antimicrobial resistance, our labs have rationally designed cationic, helical, amphipathic antimicrobial peptides (AMPs) as alternatives to traditional antibiotics since AMPs incur bacterial resistance in weeks, rather than days. One highly positively charged AMP, WLBU2 (+13e), (RRWV RRVR RWVR RVVR VVRR WVRR), has been shown to be effective in killing both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria by directly perturbing the bacterial membrane nonspecifically. Previously, we used two equilibrium experimental methods: synchrotron X-ray diffuse scattering (XDS) providing lipid membrane thickness and neutron reflectometry (NR) providing WLBU2 depth of penetration into three lipid model membranes (LMMs). The purpose of the present study is to use the results from the scattering experiments to guide molecular dynamics (MD) simulations to investigate the detailed biophysics of the interactions of WLBU2 with LMMs of Gram-negative outer and inner membranes, and Gram-positive cell membranes, to elucidate the mechanisms of bacterial killing. Instead of coarse-graining, backmapping, or simulating without bias for several microseconds, all-atom (AA) simulations were guided by the experimental results and then equilibrated for ∼0.5 µs. Multiple replicas of the inserted peptide were run to probe stability and reach a combined time of at least 1.2 µs for G(-) and also 2.0 µs for G(+). The simulations with experimental comparisons help rule out certain structures and orientations and propose the most likely set of structures, orientations, and effects on the membrane. The simulations revealed that water, phosphates, and ions enter the hydrocarbon core when WLBU2 is positioned there. For an inserted peptide, the three types of amino acids, arginine, tryptophan, and valine (R, W, V), are arranged with the 13 Rs extending from the hydrocarbon core to the phosphate group, Ws are located at the interface, and Vs are more centrally located. For a surface state, R, W, and V are positioned relative to the bilayer interface as expected from their hydrophobicities, with Rs closest to the phosphate group, Ws close to the interface, and Vs in between. G(-) and G(+) LMMs are thinned ∼1 Å by the addition of WLBU2. Our results suggest a dual anchoring mechanism for WLBU2 both in the headgroup and in the hydrocarbon region that promotes a defect region where water and ions can flow across the slightly thinned bacterial cell membrane.


Asunto(s)
Péptidos Antimicrobianos , Simulación de Dinámica Molecular , Péptidos Catiónicos Antimicrobianos/química , Bacterias/metabolismo , Membrana Dobles de Lípidos/química , Lípidos , Fosfatos , Agua
5.
Chemistry ; 26(28): 6247-6256, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32166806

RESUMEN

In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d-enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Lipopolisacáridos/química , Lípidos de la Membrana/química , Pseudomonas aeruginosa/química , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Hemólisis , Lipopolisacáridos/metabolismo , Lípidos de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA