Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Opin Pharmacother ; 22(11): 1489-1503, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33711910

RESUMEN

INTRODUCTION: The past decades have witnessed a remarkable improvement in the health of patients with Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase, resulting from the availability of enzyme replacement and substrate reduction therapies. Especially in pediatric populations, early diagnosis and initiation of treatment is essential to achieving optimal outcomes. AREAS COVERED: The authors review the literature pertaining to the effectiveness of currently available therapies and describe new pharmacotherapies under development, especially for young patients. EXPERT OPINION: For pediatric patients with non-neuronopathic Gaucher disease, there may be new therapeutic options on the horizon in the form of gene therapy or small molecule glucocerebrosidase chaperones. These have the potential to result in a cure for systemic disease manifestations and/or to reduce the cost and convenience of treatment. For children with neuronopathic Gaucher disease, the challenge of targeting therapy to the central nervous system is being explored through new modalities including brain-targeted gene therapy, in-utero therapy, brain-penetrant small molecule chaperones, and other methods that convey enzyme across the blood-brain barrier. Indeed, these are exciting times for both pediatric patients with Gaucher disease and those with other lysosomal storage disorders.


Asunto(s)
Enfermedad de Gaucher , Niño , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Glucosilceramidasa , Humanos
2.
Immunity ; 54(2): 247-258.e7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33444549

RESUMEN

The vaccine strain against smallpox, vaccinia virus (VACV), is highly immunogenic yet causes relatively benign disease. These attributes are believed to be caused by gene loss in VACV. Using a targeted small interfering RNA (siRNA) screen, we identified a viral inhibitor found in cowpox virus (CPXV) and other orthopoxviruses that bound to the host SKP1-Cullin1-F-box (SCF) machinery and the essential necroptosis kinase receptor interacting protein kinase 3 (RIPK3). This "viral inducer of RIPK3 degradation" (vIRD) triggered ubiquitination and proteasome-mediated degradation of RIPK3 and inhibited necroptosis. In contrast to orthopoxviruses, the distantly related leporipoxvirus myxoma virus (MYXV), which infects RIPK3-deficient hosts, lacks a functional vIRD. Introduction of vIRD into VACV, which encodes a truncated and defective vIRD, enhanced viral replication in mice. Deletion of vIRD reduced CPXV-induced inflammation, viral replication, and mortality, which were reversed in RIPK3- and MLKL-deficient mice. Hence, vIRD-RIPK3 drives pathogen-host evolution and regulates virus-induced inflammation and pathogenesis.


Asunto(s)
Virus de la Viruela Vacuna/fisiología , Viruela Vacuna/inmunología , ARN Interferente Pequeño/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo , Animales , Evolución Molecular , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inflamación , Ratones , Ratones Noqueados , Necroptosis/genética , Orthopoxvirus , Filogenia , Proteínas Quinasas/genética , Proteolisis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Análisis de Secuencia de ARN , Proteínas Virales/genética , Replicación Viral
3.
Sci Rep ; 10(1): 12460, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719407

RESUMEN

Control of electrical activity in neural circuits through network training is a grand challenge for biomedicine and engineering applications. Past efforts have not considered evoking long-term changes in firing patterns of in-vitro networks by introducing training regimens with respect to stages of neural development. Here, we used Channelrhodopsin-2 (ChR2) transfected mouse embryonic stem cell (mESC) derived motor neurons to explore short and long-term programming of neural networks by using optical stimulation implemented during neurogenesis and synaptogenesis. Not only did we see a subsequent increase of neurite extensions and synaptophysin clustering, but by using electrophysiological recording with micro electrode arrays (MEA) we also observed changes in signal frequency spectra, increase of network synchrony, coordinated firing of actions potentials, and enhanced evoked response to stimulation during network formation. Our results demonstrate that optogenetic stimulation during neural differentiation can result in permanent changes that extended to the genetic expression of neurons as demonstrated by RNA Sequencing. To our knowledge, this is the first time that a correlation between training regimens during neurogenesis and synaptogenesis and the resulting plastic responses has been shown in-vitro and traced back to changes in gene expression. This work demonstrates new approaches for training of neural circuits whose electrical activity can be modulated and enhanced, which could lead to improvements in neurodegenerative disease research and engineering of in-vitro multi-cellular living systems.


Asunto(s)
Neuronas Motoras/metabolismo , Red Nerviosa/metabolismo , Sinapsis/metabolismo , Sinaptofisina/metabolismo , Potenciales de Acción , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Electrofisiología , Células Madre Embrionarias/química , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/química , Neuronas Motoras/citología , Neuritas/química , Neuritas/metabolismo , Neurogénesis , Optogenética , Sinapsis/química , Sinapsis/genética , Sinaptofisina/genética
4.
Front Cell Dev Biol ; 8: 271, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509770

RESUMEN

Parkinson disease, the second most common movement disorder, is a complex neurodegenerative disorder hallmarked by the accumulation of alpha-synuclein, a neural-specific small protein associated with neuronal synapses. Mutations in the glucocerebrosidase gene (GBA1), implicated in the rare, autosomal recessive lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease. Insights into the inverse relationship between glucocerebrosidase and alpha-synuclein have led to new therapeutic approaches for the treatment of Gaucher disease and GBA1-associated Parkinson disease. Unlike the current drugs used to treat Gaucher disease, which are highly expensive and do not cross the blood-brain-barrier, new small molecules therapies, including competitive and non-competitive chaperones that enhance glucocerebrosidase levels are being developed to overcome these limitations. Some of these include iminosugars, ambroxol, other competitive glucocerebrosidase inhibitors, and non-inhibitory chaperones or activators that do not compete for the active site. These drugs, which have been shown in different disease models to increase glucocerebrosidase activity, could have potential as a therapy for Gaucher disease and GBA1- associated Parkinson disease. Some have been demonstrated to reduce α-synuclein levels in pre-clinical studies using cell-based or animal models of GBA1-associated Parkinson disease, and may also have utility for idiopathic Parkinson disease.

5.
Expert Opin Ther Targets ; 24(4): 287-294, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32106725

RESUMEN

Introduction: The association between Gaucher disease, caused by the inherited deficiency of glucocerebrosidase, and Parkinson's disease was first recognized in the clinic, noting that patients with Gaucher disease and their carrier relatives had an increased incidence of Parkinson's disease. Currently, mutations in glucocerebrosidase (GBA1) are the most common genetic risk factor for Parkinson's disease and dementia with Lewy bodies, with an inverse relationship between glucocerebrosidase and α-synuclein, a key factor in Parkinson pathogenesis. The hypothesis that therapeutic enhancement of brain glucocerebrosidase levels might reduce the aggregation, accumulation or spread of α-synuclein has spurred great interest in glucocerebrosidase as a novel therapeutic target.Area covered: This article explores the potential molecular mechanisms underlying the association between GBA1 mutations and Parkinson's disease and outlines therapeutic strategies to increase brain glucocerebrosidase, including gene therapy, targeted delivery of recombinant glucocerebrosidase to the brain, small-molecule chaperones to rescue mutant glucocerebrosidase, and small-molecule modulators to activate wild-type glucocerebrosidase.Expert opinion: Although an improved understanding of the mechanistic basis for GBA1-associated parkinsonism is essential, enhancing levels of brain glucocerebrosidase may have wide therapeutic implications. While gene therapy may ultimately be effective, less expensive and invasive small-molecule non-inhibitory chaperones or activators could significantly impact the disease course.


Asunto(s)
Glucosilceramidasa/genética , Terapia Molecular Dirigida , Enfermedad de Parkinson/terapia , Animales , Encéfalo/fisiopatología , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/fisiopatología , Enfermedad de Gaucher/terapia , Terapia Genética/métodos , Humanos , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(51): 25932-25940, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796592

RESUMEN

Formation of tissue models in 3 dimensions is more effective in recapitulating structure and function compared to their 2-dimensional (2D) counterparts. Formation of 3D engineered tissue to control shape and size can have important implications in biomedical research and in engineering applications such as biological soft robotics. While neural spheroids routinely are created during differentiation processes, further geometric control of in vitro neural models has not been demonstrated. Here, we present an approach to form functional in vitro neural tissue mimic (NTM) of different shapes using stem cells, a fibrin matrix, and 3D printed molds. We used murine-derived embryonic stem cells for optimizing cell-seeding protocols, characterization of the resulting internal structure of the construct, and remodeling of the extracellular matrix, as well as validation of electrophysiological activity. Then, we used these findings to biofabricate these constructs using neurons derived from human embryonic stem cells. This method can provide a large degree of design flexibility for development of in vitro functional neural tissue models of varying forms for therapeutic biomedical research, drug discovery, and disease modeling, and engineering applications.


Asunto(s)
Tejido Nervioso/citología , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Humanos , Ratones , Esferoides Celulares/citología
7.
J Biophotonics ; 12(3): e201800269, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30311744

RESUMEN

Optogenetics has emerged as an exciting tool for manipulating neural activity, which in turn, can modulate behavior in live organisms. However, detecting the response to the optical stimulation requires electrophysiology with physical contact or fluorescent imaging at target locations, which is often limited by photobleaching and phototoxicity. In this paper, we show that phase imaging can report the intracellular transport induced by optogenetic stimulation. We developed a multimodal instrument that can both stimulate cells with subcellular spatial resolution and detect optical pathlength (OPL) changes with nanometer scale sensitivity. We found that OPL fluctuations following stimulation are consistent with active organelle transport. Furthermore, the results indicate a broadening in the transport velocity distribution, which is significantly higher in stimulated cells compared to optogenetically inactive cells. It is likely that this label-free, contactless measurement of optogenetic response will provide an enabling approach to neuroscience.


Asunto(s)
Neuronas/citología , Optogenética , Animales , Colina/metabolismo , Imagen Molecular , Neuronas/metabolismo , Células PC12 , Fenotipo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...