Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
ACS Omega ; 9(14): 16759-16774, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617692

RESUMEN

Cancer, a life-disturbing and lethal disease with a high global impact, causes significant economic, social, and health challenges. Breast cancer refers to the abnormal growth of cells originating from breast tissues. Hormone-dependent forms of breast cancer, such as those influenced by estrogen, prompt the exploration of estrogen receptors as targets for potential therapeutic interventions. In this study, we conducted e-QSAR molecular docking and molecular dynamics analyses on a diverse set of inhibitors targeting estrogen receptor alpha (ER-α). The e-QSAR model is based on a genetic algorithm combined with multilinear regression analysis. The newly developed model possesses a balance between predictive accuracy and mechanistic insights adhering to the OECD guidelines. The e-QSAR model pointed out that sp2-hybridized carbon and nitrogen atoms are important atoms governing binding profiles. In addition, a specific combination of H-bond donors and acceptors with carbon, nitrogen, and ring sulfur atoms also plays a crucial role. The results are supported by molecular docking, MD simulations, and X-ray-resolved structures. The novel results could be useful for future drug development for ER-α.

2.
J Pak Med Assoc ; 74(1 (Supple-2)): S8-S13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385464

RESUMEN

OBJECTIVE: To assess the link between tumour necrosis factor-alpha -308 guanine/adenine polymorphism and tumour necrosis factor-alpha plasma levels in relation to obstructive sleep apnoea. METHODS: The cross-sectional study was conducted from December 2018 to March 2021 at the sleep clinic of Dow University Hospital, Karachi, on obstructive sleep apnoea patients and healthy controls. Epworth Sleep Scale score was used to determine daytime sleepiness, while full-night polysomnography was carried out for obstructive sleep apnoea confirmation and categorisation according to severity. Blood sample collection was followed by deoxyribonucleic acid extraction and plasma tumour necrosis factor-alpha measurement using enzyme-linked immunosorbent assay. Genotype distribution and allelic frequency were assessed. Data was analysed using SPSS 20. RESULTS: Out of the 225 subjects, with a mean age of 47.68±9.88 years, 132 (58.7%) were males, and 93 (41.3%) were females. Among them, 150 (66.7%) were patients, and 75 (33.3%) were controls. Heterozygous tumour necrosis factor-alpha -308 guanine/adenine genotypes were significantly higher among the patients (p<0.05). Minor allele - 308 adenine showed an association with obstructive sleep apnoea, its severity, higher tumour necrosis factor-alpha levels, neck circumference, excessive daytime sleepiness and the presence of hypertension (p<0.05). CONCLUSIONS: Tumour necrosis factor-alpha -308 adenine allele and higher tumour necrosis factor-alpha levels were found to be linked with obstructive sleep apnoea. The polymorphism also showed an association with hypertension in obstructive sleep apnoea patients.


Asunto(s)
Trastornos de Somnolencia Excesiva , Hipertensión , Apnea Obstructiva del Sueño , Factor de Necrosis Tumoral alfa , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenina , Estudios Transversales , Trastornos de Somnolencia Excesiva/complicaciones , Guanina , Hipertensión/complicaciones , Pakistán/epidemiología , Apnea Obstructiva del Sueño/epidemiología , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/complicaciones , Factor de Necrosis Tumoral alfa/genética
3.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339662

RESUMEN

Conventional air quality monitoring has been traditionally carried out in a few fixed places with expensive measuring equipment. This results in sparse spatial air quality data, which do not represent the real air quality of an entire area, e.g., when hot spots are missing. To obtain air quality data with higher spatial and temporal resolution, this research focused on developing a low-cost network of cloud-based air quality measurement platforms. These platforms should be able to measure air quality parameters including particulate matter (PM10, PM2.5, PM1) as well as gases like NO, NO2, O3, and CO, air temperature, and relative humidity. These parameters were measured every second and transmitted to a cloud server every minute on average. The platform developed during this research used one main computer to read the sensor data, process it, and store it in the cloud. Three prototypes were tested in the field: two of them at a busy traffic site in Stuttgart, Marienplatz and one at a remote site, Ötisheim, where measurements were performed near busy railroad tracks. The developed platform had around 1500 € in materials costs for one Air Quality Sensor Node and proved to be robust during the measurement phase. The notion of employing a Proportional-Integral-Derivative (PID) controller for the efficient working of a dryer that is used to reduce the negative effect of meteorological parameters such as air temperature and relative humidity on the measurement results was also pursued. This is seen as one way to improve the quality of data captured by low-cost sensors.

4.
J Biomol Struct Dyn ; : 1-31, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385447

RESUMEN

A lysine-specific demethylase is an enzyme that selectively eliminates methyl groups from lysine residues. KDM5A, also known as JARID1A or RBP2, belongs to the KDM5 Jumonji histone demethylase subfamily. To identify novel molecules that interact with the LSD5A receptor, we created a quantitative structure-activity relationship (QSAR) model. A group of 435 compounds was used in a study of the quantitative relationship between structure and activity to guess the IC50 values for blocking LASD5A. We used a genetic algorithm-multilinear regression-based quantitative structure-activity connection model to forecast the bioactivity (PIC50) of 1615 food and drug administration pharmaceuticals from the zinc database with the goal of repurposing clinically used medications. We used molecular docking, molecular dynamic simulation modelling, and molecular mechanics generalised surface area analysis to investigate the molecule's binding mechanism. A genetic algorithm and multi-linear regression method were used to make six variable-based quantitative structure-activity relationship models that worked well (R2 = 0.8521, Q2LOO = 0.8438, and Q2LMO = 0.8414). ZINC000000538621 was found to be a new hit against LSD5A after a quantitative structure-activity relationship-based virtual screening of 1615 zinc food and drug administration compounds. The docking analysis revealed that the hit molecule 11 in the KDM5A binding pocket adopted a conformation similar to the pdb-6bh1 ligand (docking score: -8.61 kcal/mol). The results from molecular docking and the quantitative structure-activity relationship were complementary and consistent. The most active lead molecule 11, which has shown encouraging results, has good absorption, distribution, metabolism, and excretion (ADME) properties, and its toxicity has been shown to be minimal. In addition, the MTT assay of ZINC000000538621 with MCF-7 cell lines backs up the in silico studies. We used molecular mechanics generalise borne surface area analysis and a 200-ns molecular dynamics simulation to find structural motifs for KDM5A enzyme interactions. Thus, our strategy will likely expand food and drug administration molecule repurposing research to find better anticancer drugs and therapies.Communicated by Ramaswamy H. Sarma.

5.
Plant Physiol Biochem ; 207: 108387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266565

RESUMEN

Plants have developed diverse physical and chemical defence mechanisms to ensure their continued growth and well-being in challenging environments. Plants also have evolved intricate molecular mechanisms to regulate their responses to biotic stress. Non-coding RNA (ncRNA) plays a crucial role in this process that affects the expression or suppression of target transcripts. While there have been numerous reviews on the role of molecules in plant biotic stress, few of them specifically focus on how plant ncRNAs enhance resistance through various mechanisms against different pathogens. In this context, we explored the role of ncRNA in exhibiting responses to biotic stress endogenously as well as cross-kingdom regulation of transcript expression. Furthermore, we address the interplay between ncRNAs, which can act as suppressors, precursors, or regulators of other ncRNAs. We also delve into the regulation of ncRNAs in response to attacks from different organisms, such as bacteria, viruses, fungi, nematodes, oomycetes, and insects. Interestingly, we observed that diverse microorganisms interact with distinct ncRNAs. This intricacy leads us to conclude that each ncRNA serves a specific function in response to individual biotic stimuli. This deeper understanding of the molecular mechanisms involving ncRNAs in response to biotic stresses enhances our knowledge and provides valuable insights for future research in the field of ncRNA, ultimately leading to improvements in plant traits.


Asunto(s)
Nematodos , Plantas , Animales , Plantas/genética , ARN no Traducido/genética , Bacterias , Estrés Fisiológico/genética , ARN de Planta/genética
6.
Front Biosci (Landmark Ed) ; 29(1): 43, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38287835

RESUMEN

BACKGROUND: Medicinal herbs are frequently used for the management of gastrointestinal disorders because they contain various compounds that can potentially amplify the intended therapeutic effects. Cuminaldehyde is a plant-based constituent found in oils derived from botanicals such as cumin, eucalyptus, myrrh, and cassia and is responsible for its health benefits. Despite the utilization of cuminaldehyde for several medicinal properties, there is currently insufficient scientific evidence to support its effectiveness in treating diarrhea. Hence, the present investigation was carried out to evaluate the antidiarrheal and antispasmodic efficacy of cuminaldehyde, with detailed pharmacodynamics explored. METHODS: An in vivo antidiarrheal test was conducted in mice following the castor oil-induced diarrhea model, while an isolated small intestine obtained from rats was used to evaluate the detailed mechanism(s) of antispasmodic effects. RESULTS: Cuminaldehyde, at 10 and 20 mg/kg, exhibited 60 and 80% protection in mice from episodic diarrhea compared to the saline control group, whereas this inhibitory effect was significantly reversed in the pretreated mice with glibenclamide, similar to cromakalim, an ATP-dependent K+ channel opener. In the ex vivo experiments conducted in isolated rat tissues, cuminaldehyde reversed the glibenclamide-sensitive low K+ (25 mM)-mediated contractions at significantly higher potency compared to its inhibitory effect against high K+ (80 mM), thus showing predominant involvement of ATP-dependent K+ activation followed by Ca++ channel inhibition. Cromakalim, a standard drug, selectively suppressed the glibenclamide-sensitive low K+-induced contractions, whereas no relaxation was observed against high K+, as expected. Verapamil, a Ca++ channel inhibitor, effectively suppressed both low and high K+-induced contractions with similar potency, as anticipated. At higher concentrations, the inhibitory effect of cuminaldehyde against Ca++ channels was further confirmed when the preincubated ileum tissues with cuminaldehyde (3 and 10 mM) in Ca++ free medium shifted CaCl2-mediated concentration-response curves (CRCs) towards the right with suppression of the maximum peaks, similar to verapamil, a standard Ca++ ion inhibitor. CONCLUSIONS: Present findings support the antidiarrheal and antispasmodic potential of cuminaldehyde, possibly by the predominant activation of ATP-dependent K+ channels followed by voltage-gated Ca++ inhibition. However, further in-depth assays are recommended to know the precise mechanism and to elucidate additional unexplored mechanism(s) if involved.


Asunto(s)
Antidiarreicos , Benzaldehídos , Cimenos , Parasimpatolíticos , Ratas , Ratones , Animales , Antidiarreicos/efectos adversos , Parasimpatolíticos/efectos adversos , Cromakalim/efectos adversos , Gliburida/efectos adversos , Extractos Vegetales/farmacología , Yeyuno , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Verapamilo/efectos adversos , Adenosina Trifosfato
7.
PLoS One ; 19(1): e0286848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38227609

RESUMEN

Several studies have revealed that SARS-CoV-2 damages brain function and produces significant neurological disability. The SARS-CoV-2 coronavirus, which causes COVID-19, may infect the heart, kidneys, and brain. Recent research suggests that monoamine oxidase B (MAO-B) may be involved in metabolomics variations in delirium-prone individuals and severe SARS-CoV-2 infection. In light of this situation, we have employed a variety of computational to develop suitable QSAR model using PyDescriptor and genetic algorithm-multilinear regression (GA-MLR) models (R2 = 0.800-793, Q2LOO = 0.734-0.727, and so on) on the data set of 106 molecules whose anti-SARS-CoV-2 activity was empirically determined. QSAR models generated follow OECD standards and are predictive. QSAR model descriptors were also observed in x-ray-resolved structures. After developing a QSAR model, we did a QSAR-based virtual screening on an in-house database of 200 compounds and found a potential hit molecule. The new hit's docking score (-8.208 kcal/mol) and PIC50 (7.85 M) demonstrated a significant affinity for SARS-CoV-2's main protease. Based on post-covid neurodegenerative episodes in Alzheimer's and Parkinson's-like disorders and MAO-B's role in neurodegeneration, the initially disclosed hit for the SARS-CoV-2 main protease was repurposed against the MAO-B receptor using receptor-based molecular docking, which yielded a docking score of -12.0 kcal/mol. This shows that the compound that inhibits SARS-CoV-2's primary protease may bind allosterically to the MAO-B receptor. We then did molecular dynamic simulations and MMGBSA tests to confirm molecular docking analyses and quantify binding free energy. The drug-receptor complex was stable during the 150-ns MD simulation. The first computational effort to show in-silico inhibition of SARS-CoV-2 Mpro and allosteric interaction of novel inhibitors with MAO-B in post-covid neurodegenerative symptoms and other disorders. The current study seeks a novel compound that inhibits SAR's COV-2 Mpro and perhaps binds MAO-B allosterically. Thus, this study will enable scientists design a new SARS-CoV-2 Mpro that inhibits the MAO-B receptor to treat post-covid neurological illness.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , SARS-CoV-2/metabolismo , Monoaminooxidasa/metabolismo , Simulación del Acoplamiento Molecular , Descubrimiento de Drogas , Simulación de Dinámica Molecular , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología
8.
J Biomol Struct Dyn ; 42(5): 2550-2569, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37144753

RESUMEN

Due to the high rates of drug development failure and the massive expenses associated with drug discovery, repurposing existing drugs has become more popular. As a result, we have used QSAR modelling on a large and varied dataset of 657 compounds in an effort to discover both explicit and subtle structural features requisite for ACE2 inhibitory activity, with the goal of identifying novel hit molecules. The QSAR modelling yielded a statistically robust QSAR model with high predictivity (R2tr=0.84, R2ex=0.79), previously undisclosed features, and novel mechanistic interpretations. The developed QSAR model predicted the ACE2 inhibitory activity (PIC50) of 1615 ZINC FDA compounds. This led to the detection of a PIC50 of 8.604 M for the hit molecule (ZINC000027990463). The hit molecule's docking score is -9.67 kcal/mol (RMSD 1.4). The hit molecule revealed 25 interactions with the residue ASP40, which defines the N and C termini of the ectodomain of ACE2. The HIT molecule conducted more than thirty contacts with water molecules and exhibited polar interaction with the ARG522 residue coupled with the second chloride ion, which is 10.4 nm away from the zinc ion. Both molecular docking and QSAR produced comparable findings. Moreover, MD simulation and MMGBSA studies verified docking analysis. The MD simulation showed that the hit molecule-ACE2 receptor complex is stable for 400 ns, suggesting that repurposed hit molecule 3 is a viable ACE2 inhibitor.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Relación Estructura-Actividad Cuantitativa , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Simulación por Computador , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Zinc
9.
Cureus ; 15(11): e48821, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38106701

RESUMEN

India experiences a significant amount of morbidity and mortality due to gliomas particularly glioblastoma multiforme (GBM), which ranks among the worst cancers. Oxaloacetate (OAA) is a human keto acid that is central to cellular metabolism; it has been recognized by the US FDA for use in GBM patients, triggering a review to revisit the cellular mechanism of its therapeutic action. Various cellular and molecular studies have proposed that instead of fueling the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), gliomas prefer to use glycolysis (the Warburg effect) to fuel macromolecules for the synthesis of nucleotides, fatty acids, and amino acids for the accelerated mitosis. A study found that oxaloacetate (OAA) inhibits human lactate dehydrogenase A (LDHA) in cancer cells, reversing the Warburg effect. Studies revealed that OAA supplementation reduced Warburg glycolysis, improved neuronal cell bioenergetics, and triggered brain mitochondrial biogenesis, thereby enhancing the efficacy of standard treatment. Similarly, OAA has been found in preclinical investigations to be able to decrease tumor development and survival rates by blocking the conversion of glutamine to alpha-ketoglutarate (alpha-KG) in the TCA cycle and lowering nicotinamide adenine dinucleotide phosphate (NADPH) levels. OAA is a safe adjuvant that has the potential to be an effective therapy in gliomas when combined with temozolomide (TMZ) chemotherapy and routine surgery.

10.
Physiol Plant ; 175(5): e13994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882277

RESUMEN

Plant lipocalins perform diverse functions. Recently, allene oxide cyclase, a lipocalin family member, has been shown to co-express with vindoline pathway genes in Catharanthus roseus under various biotic/abiotic stresses. This brought focus to another family member, a temperature-induced lipocalin (CrTIL), which was selected for full-length cloning, tissue-specific expression profiling, in silico characterization, and upstream genomic region analysis for cis-regulatory elements. Stress-mediated variations in CrTIL expression were reflected as disturbances in cell membrane integrity, assayed through measurement of electrolyte leakage and lipid peroxidation product, MDA, which implicated the role of CrTIL in maintaining cell membrane integrity. For ascertaining the function of CrTIL in maintaining membrane stability and elucidating the relationship between CrTIL expression and vindoline content, if any, a direct approach was adopted, whereby CrTIL was transiently silenced and overexpressed in C. roseus. CrTIL silencing and overexpression confirmed its role in the maintenance of membrane integrity and indicated an inverse relationship of its expression with vindoline content. GFP fusion-based subcellular localization indicated membrane localization of CrTIL, which was in agreement with its role in maintaining membrane integrity. Altogether, the role of CrTIL in maintaining membrane structure has possible implications for the intracellular sequestration, storage, and viability of vindoline.


Asunto(s)
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Temperatura , Vinblastina/química , Vinblastina/metabolismo , Lipocalinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
11.
Biomed Res Int ; 2023: 7278070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727279

RESUMEN

Infectious diseases have been tremendously increasing as the organisms of even normal flora become opportunistic and cause an infection, and Escherichia coli (E. coli EQ101) is one of them. Urinary tract infections are caused by various microorganisms, but Escherichia coli is the primary cause of almost 70%-90% of all UTIs. It has multiple strains, possessing diverse virulence factors, contributing to its pathogenicity. Furthermore, these virulent strains also can cause overlapping pathogenesis by sharing resistance and virulence factors among each other. The current study is aimed at analyzing the genetic variants associated with multi-drug-resistant (MDR) E. coli using the whole genome sequencing platform. The study includes 100 uropathogenic Escherichia coli (UPEC) microorganisms obtained from urine samples out of which 44% were multi-drug-resistant (MDR) E. coli. Bacteria have been isolated and antimicrobial susceptibility test (AST) was determined by disk diffusion method on the Mueller-Hinton agar plate as recommended by the Clinical and Laboratory Standards Institute (CLSI) 2020, and one isolate has been selected which shows resistance to most of the antibiotics, and that isolate has been analyzed by whole genome sequencing (WGS), accompanied by data and phylogenetic analysis, respectively. Organisms were showing resistance against ampicillin (10 µg), cefixime (5 µg), ceftriaxone (30 µg), nalidixic acid (30 µg), ciprofloxacin (5 µg), and ofloxacin (5 µg) on antimicrobial susceptibility test. WGS were done on selected isolate which identified 25 virulence genes (air, astA, chuA, fyuA, gad, hra, iha, irp2, iss, iucC, iutA, kpsE, kpsMII_K1, lpfA, mchF, ompT, papA_F43, sat, senB, sitA, terC, traT, usp, vat, and yfcV) and seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Among resistance genes, seven genes (TolC, emrR, evgA, qacEdelta1, H-NS, cpxA, and mdtM) were identified to be involved in antibiotic efflux, three AMR genes (aadA5, mphA, and CTX-M-15) were involved in antibiotic inactivation, and two genes (sul1 and dfrA14) were found to be involved in antibiotic drug replacement. Our data identified antibiotic resistance and virulence genes of the isolate. We suggest further research work to establish region-based resistance profile in comparison with the global resistance pattern.


Asunto(s)
Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Factores de Virulencia/genética , Antibacterianos/farmacología , Escherichia coli Uropatógena/genética , Pakistán , Filogenia , Farmacorresistencia Bacteriana/genética , Infecciones Urinarias/tratamiento farmacológico , Proteínas de Transporte de Membrana , Proteínas de Escherichia coli/genética
12.
Cureus ; 15(7): e41447, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37546034

RESUMEN

Burnout and depression are global problems affecting healthcare providers, especially those working in stressful departments such as emergency departments (EDs) and critical care units (CCUs). However, pooled data analysis comparing healthcare providers operating in the ED and CCU is yet to be conducted. Therefore, this meta-analysis was systematically conducted to investigate and compare the prevalence of burnout and depression among emergency medicine (EM) and critical care medicine (CCM) professionals. We systematically searched for articles related to our research topic using the database search method and manual search method, which involved reviewing the reference lists of articles from electronic databases for additional studies. After screening the literature from the databases using the eligibility criteria, a quality appraisal using the Newcastle-Ottawa scale was performed on the eligible studies. In addition, a meta-analysis using the Review Manager software was performed to investigate the prevalence rates of burnout and depression. A total of 10 studies with 1,353 EM and 1,250 CCM professionals were included for analysis in the present study. The pooled analysis did not establish any considerable differences between EM and CCM healthcare workers on the prevalence of high emotional exhaustion (EE) (odds ratio (OR) = 1.01; 95% confidence interval (CI) = 0.46-2.19; p = 0.98), high depersonalization (OR = 1.16; 95% CI = 0.61-2.21; p = 0.64), low personal accomplishment (PA) (OR = 0.87; 95% CI = 0.67 - 1.12; p = 0.28), and depression (OR = 1.20; 95% CI = 0.74-1.95; p = 0.45). Moreover, pooled data showed no considerable differences in EE scores (mean difference (MD) = -1.07; 95% CI = -4.24-2.09; p = 0.51) and depersonalization scores (MD = -0.31; 95% CI = -1.35-0.73; p = 0.56). However, EM healthcare workers seemed to have considerably lower PA scores than their CCM counterparts (MD = 0.12; 95% CI = 0.08-0.16; p < 0.00001). No considerable difference was recorded in the prevalence of burnout and depression between EM and CCM healthcare workers. However, our findings suggest that EM professionals have lower PA scores than CCM professionals; therefore, more attention should be paid to the mental health of EM professionals to improve their PA.

13.
Cureus ; 15(7): e41876, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37581156

RESUMEN

Paracetamol (acetaminophen) is an extensively used analgesic for acute and chronic pain management. Currently, paracetamol is manufactured for oral, rectal, and intravenous (IV) use. Research has shown varied results on the analgesic properties of IV paracetamol compared to oral and rectal paracetamol; however, research on the same doses of paracetamol is limited. Therefore, this review was constructed to explore the analgesic properties of IV paracetamol compared with oral and rectal paracetamol administered in equivalent doses. A broad and thorough literature search was performed on five electronic databases, including PubMed, ScienceDirect, Medline, Scopus, and Google Scholar. Statistical analysis of all outcomes in our review was then performed using the Review Manager software. Outcomes were categorized as primary (pain relief and time to request rescue analgesia) and secondary (adverse events after analgesia). An extensive quality appraisal was also done using the Review Manager software's Cochrane risk of bias tool. The literature survey yielded 2,945 articles, of which 12 were used for review and analysis. The pooled analysis for patients undergoing surgical procedures showed that IV paracetamol had statistically similar postoperative pain scores at two (mean difference (MD) = -0.14; 95% confidence interval (CI) -0.58-0.29; p = 0.51), 24 (MD = 0.09; 95% CI = -0.02-0.21; p = 0.12), and 48 (MD = 0.04; 95% CI = -0.08-0.16; p = 0.52) hours as oral paracetamol. Similarly, the data on time to rescue analgesia showed no considerable difference between the IV and oral paracetamol groups (MD = -1.58; 95% CI = -5.51-2.35; p = 0.43). On the other hand, the pooled analysis for patients presenting non-surgical acute pain showed no significant difference in the mean pain scores between patients treated with IV and oral paracetamol (MD = -0.35; 95% CI = -2.19-1.48; p = 0.71). Furthermore, a subgroup analysis of analgesia-related adverse events showed that the incidences of vomiting/nausea and pruritus did not differ between patients receiving IV and oral paracetamol (odds ratio (OR) = 0.71; 95% CI = 0.45-1.11; p = 0.13 and OR = 0.48; 95% CI = 0.18-1.29; p = 0.05, respectively). A review of information from two trials comparing equal doses of IV and rectal paracetamol suggested that the postoperative pain scores were statistically similar between the groups. IV paracetamol is not superior to oral or rectal paracetamol administered in equal doses. Therefore, we cannot recommend or refute IV paracetamol as the first-line analgesia for acute and postoperative pain.

14.
Front Microbiol ; 14: 1168653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465026

RESUMEN

The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.

15.
3 Biotech ; 13(6): 178, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188293

RESUMEN

Begomovirus is the largest genus of the family Geminiviridae with wide host range and responsible for a considerable amount of economic damage to many important crops globally. Withania somnifera (Indian ginseng) is an important medicinal plant with high demand in pharmaceutical industries worldwide. During the routine survey in 2019, typical characteristic viral symptoms such as severe leaf curling, downward rolling of the leaves, vein clearing, and poor growth of Withania plants with 17-20% disease incidence were observed in Lucknow, India. Typical symptoms, abundant presence of whiteflies, PCR and RCA based detection indicated the amplification of ~ 2.7 kb and suspected the causal pathogen to be a begomovirus, associated with a betasatellite (~ 1.3 kb). Transmission electron microscopy revealed the presence of twinned particles of ~ 18-20 nm in diameter. Full genome sequencing (2758 bp) of the virus and its analysis showed only 88% sequence identity with the begomovirus sequences present in the database. Hence, based on the nomenclature guidelines we concluded that the virus associated with the present disease of W. somnifera is a novel begomovirus and its name is proposed as Withania leaf curl virus.

16.
Front Pharmacol ; 14: 1129997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144217

RESUMEN

Rudolf Virchow was the first person to point out the important link between immune function and cancer. He did this by noticing that leukocytes were often found in tumors. Overexpression of arginase 1 (ARG1) and inducible nitric oxide synthase (iNOS) in myeloid-derived suppressor cells (MDSCs) and tumour-associated macrophages (TAMs) depletes both intracellular and extracellular arginine. TCR signalling is slowed as a result, and the same types of cells produce reactive oxygen and nitrogen species (ROS and RNS), which aggravates the situation. Human arginase I is a double-stranded manganese metalloenzyme that helps L-arginine break down into L-ornithine and urea. Thus, a quantitative structure-activity relationship (QSAR) analysis was performed to unearth the unrecognised structural aspects crucial for arginase-I inhibition. In this work, a balanced QSAR model with good prediction performance and clear mechanistic interpretation was developed using a dataset of 149 molecules encompassing a broad range of structural scaffolds and compositions. The model was made to meet OECD standards, and all of its validation parameters have values that are higher than the minimum requirements (R2 tr = 0.89, Q2 LMO = 0.86, and R2 ex = 0.85). The present QSAR study linked structural factors to arginase-I inhibitory action, including the proximity of lipophilic atoms to the molecule's centre of mass (within 3A), the position of the donor to the ring nitrogen (exactly 3 bonds away), and the surface area ratio. As OAT-1746 and two others are the only arginase-I inhibitors in development at the time, we have performed a QSAR-based virtual screening with 1650 FDA compounds taken from the zinc database. In this screening, 112 potential hit compounds were found to have a PIC50 value of less than 10 nm against the arginase-I receptor. The created QSAR model's application domain was evaluated in relation to the most active hit molecules identified using QSAR-based virtual screening, utilising a training set of 149 compounds and a prediction set of 112 hit molecules. As shown in the Williams plot, the top hit molecule, ZINC000252286875, has a low leverage value of HAT i/i h* = 0.140, placing it towards the boundary of the usable range. Furthermore, one of 112 hit molecules with a docking score of -10.891 kcal/mol (PIC50 = 10.023 M) was isolated from a study of arginase-I using molecular docking. Protonated ZINC000252286875-linked arginase-1 showed 2.9 RMSD, whereas non-protonated had 1.8. RMSD plots illustrate protein stability in protonated and non-protonated ZINC000252286875-bound states. Protonated-ZINC000252286875-bound proteins contain 25 Rg. The non-protonated protein-ligand combination exhibits a 25.2-Rg, indicating compactness. Protonated and non-protonated ZINC000252286875 stabilised protein targets in binding cavities posthumously. Significant root mean square fluctuations (RMSF) were seen in the arginase-1 protein at a small number of residues for a time function of 500 ns in both the protonated and unprotonated states. Protonated and non-protonated ligands interacted with proteins throughout the simulation. ZINC000252286875 bound Lys64, Asp124, Ala171, Arg222, Asp232, and Gly250. Aspartic acid residue 232 exhibited 200% ionic contact. 500-ns simulations-maintained ions. Salt bridges for ZINC000252286875 aided docking. ZINC000252286875 created six ionic bonds with Lys68, Asp117, His126, Ala171, Lys224, and Asp232 residues. Asp117, His126, and Lys224 showed 200% ionic interactions. In protonated and deprotonated states, GbindvdW, GbindLipo, and GbindCoulomb energies played crucial role. Moreover, ZINC000252286875 meets all of the ADMET standards to serve as a drug. As a result, the current analyses were successful in locating a novel and potent hit molecule that inhibits arginase-I effectively at nanomolar concentrations. The results of this investigation can be used to develop brand-new arginase I inhibitors as an alternative immune-modulating cancer therapy.

17.
Clin Epidemiol Glob Health ; 21: 101283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033719

RESUMEN

Problem: The determinants of COVID-19 vaccine acceptance, hesitancy, and refusal remain poorly understood. We assessed the general population of Pune after visiting tertiary care hospital for their willingness to accept the vaccine and the reason for their hesitancy and refusal. Methodology: A six-month descriptive cross-sectional study with 386 community members over the age of 18 who visited the Tertiary Hospital OPD was conducted. The vaccine acceptance and hesitancy was assessed using a self designed detailed questionnaire with a one-time face-to-face interview. Results: Acceptance for vaccine was observed in 235 (60.8%) participants, while 151 (39.2%) hesitated and refused. Participants with lower education (P < 0.00001), no employment did not readily accept the vaccine (P < 0.00001). Pregnant, breast-feeding women (21.8%) hesitated vaccine because of lack of evidence regarding vaccine safety. Participants (73.6%) were readily accepting (third dose) booster dose of vaccine when available. The reason for vaccine hesitance was the concern about side effects (58.2%) and reason for acceptance was to get immunity against COVID-19 (76.1%). Vaccine information source appears to be an influential aspect, as participants who obtained vaccination information from healthcare providers had no concerns regarding vaccination. Conclusion: The study has found a link between average education level, unemployment and vaccine acceptance and hesitancy. Factors influencing vaccine hesitancy include lack of vaccine information, vaccine side effects, and misinformation spread via social media. Clinical pharmacists can play an important role in boosting up vaccine acceptance by providing appropriate information in community.

18.
Front Microbiol ; 14: 1148157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089542

RESUMEN

Plant-microbe interactions play a crucial role in maintaining biodiversity and ecological services in boreal forest biomes. Mining for minerals, and especially the emission of heavy metal-enriched dust from mine sites, is a potential threat to biodiversity in offsite landscapes. Understanding the impacts of mining on surrounding phyllosphere microbiota is especially lacking. To investigate this, we characterized bacterial and fungal communities in the phyllosphere of feather moss Pleurozium schreberi (Brid). Mitt in boreal landscapes near six gold mine sites at different stages of the mine lifecycle. We found that (1) both mining stage and ecosystem type are drivers of the phyllosphere microbial community structure in mine offsite landscapes; (2) Bacterial alpha diversity is more sensitive than fungal alpha diversity to mining stage, while beta diversity of both groups is impacted; (3) mixed and deciduous forests have a higher alpha diversity and a distinct microbial community structure when compared to coniferous and open canopy ecosystems; (4) the strongest effects are detectable within 0.2 km from operating mines. These results confirmed the presence of offsite effects of mine sites on the phyllosphere microbiota in boreal forests, as well as identified mining stage and ecosystem type as drivers of these effects. Furthermore, the footprint was quantified at 0.2 km, providing a reference distance within which mining companies and policy makers should pay more attention during ecological assessment and for the development of mitigation strategies. Further studies are needed to assess how these offsite effects of mines affect the functioning of boreal ecosystems.

19.
Antibiotics (Basel) ; 12(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36978406

RESUMEN

The rise of antimicrobial resistance (AMR) in bacterial pathogens such as Klebsiella pneumoniae (Kp) is a pressing public health and economic concern. The 'One-Health' framework recognizes that effective management of AMR requires surveillance in agricultural as well as clinical settings, particularly in low-resource regions such as Pakistan. Here, we use whole-genome sequencing to characterise 49 isolates of Klebisella spp. (including 43 Kp) and 2 presumptive Providencia rettgeri isolates recovered from dairy farms located near 3 cities in Pakistan-Quetta (n = 29), Faisalabad (n = 19), and Sargodha (n = 3). The 43 Kp isolates corresponded to 38 sequence types (STs), and 35 of these STs were only observed once. This high diversity indicates frequent admixture and limited clonal spread on local scales. Of the 49 Klebsiella spp. isolates, 41 (84%) did not contain any clinically relevant antimicrobial resistance genes (ARGs), and we did not detect any ARGs predicted to encode resistance to carbapenems or colistin. However, four Kp lineages contained multiple ARGs: ST11 (n = 2), ST1391-1LV (n = 1), ST995 (n = 1) and ST985 (n = 1). STs 11, 1391-1LV and 995 shared a core set of five ARGs, including blaCTX-M-15, harboured on different AMR plasmids. ST985 carried a different set of 16 resistance genes, including blaCTX-M-55. The two presumptive P. rettgeri isolates also contained multiple ARGs. Finally, the four most common plasmids which did not harbour ARGs in our dataset were non-randomly distributed between regions, suggesting that local expansion of the plasmids occurs independently of the host bacterial lineage. Evidence regarding how dairy farms contribute to the emergence and spread of AMR in Pakistan is valuable for public authorities and organizations responsible for health, agriculture and the environment, as well as for industrial development.

20.
Genes (Basel) ; 14(3)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36980969

RESUMEN

Nepentheceae, the most prominent carnivorous family in the Caryophyllales order, comprises the Nepenthes genus, which has modified leaf trap characteristics. Although most Nepenthes species have unique morphologies, their vegetative stages are identical, making identification based on morphology difficult. DNA barcoding is seen as a potential tool for plant identification, with small DNA segments amplified for species identification. In this study, three barcode loci; ribulose-bisphosphate carboxylase (rbcL), intergenic spacer 1 (ITS1) and intergenic spacer 2 (ITS2) and the usefulness of the ITS1 and ITS2 secondary structure for the molecular identification of Nepenthes species were investigated. An analysis of barcodes was conducted using BLASTn, pairwise genetic distance and diversity, followed by secondary structure prediction. The findings reveal that PCR and sequencing were both 100% successful. The present study showed the successful amplification of all targeted DNA barcodes at different sizes. Among the three barcodes, rbcL was the least efficient as a DNA barcode compared to ITS1 and ITS2. The ITS1 nucleotide analysis revealed that the ITS1 barcode had more variations compared to ITS2. The mean genetic distance (K2P) between them was higher for interspecies compared to intraspecies. The results showed that the DNA barcoding gap existed among Nepenthes species, and differences in the secondary structure distinguish the Nepenthes. The secondary structure generated in this study was found to successfully discriminate between the Nepenthes species, leading to enhanced resolutions.


Asunto(s)
Caryophyllales , Código de Barras del ADN Taxonómico , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Caryophyllales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...