Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 337: 122572, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717901

RESUMEN

Bioelectrochemical degradation is an environmentally friendly, cost-effective and controllable way of providing electron acceptor to the microorganisms. A two-chamber continuous-flow bioelectrochemical reactor (BER) was developed in this study. The objective was to investigate the potential for enhancing the bioelectrochemical degradation of 1,4-dioxane (DX) by Pseudonocardia dioxanivorans CB1190 (CB1190) and microbial community biofilm on conductive and non-conductive carriers in low potentials (1.0-1.2 V) and currents (<2 mA). In the case of CB1190, biodegradation experiments at 1.0 V did not result in any observable change in DX removal efficiency (32.63 ± 2.48%) compared to the 0.0 V (31.69 ± 2.33%). However, the removal efficiency was much higher at 1.2 V (59.08 ± 0.86%). The higher removal at 1.2 V was attributed to an increase in dissolved oxygen (DO) concentration from 3.77 ± 0.33 mg/L at 0.0 V to 5.40 ± 0.11 mg/L at 1.2 V, which resulted from water electrolysis. In the case of microbial community, on the other hand, DX removal efficiency increased at 1.0 V (30.98 ± 1.10%) compared to 0.0 V (23.40 ± 1.02%) that can be attributed to a simultaneous increase in microbial activity from 2389 ± 118.5 ngATP/mgVSS at 0.0 V to 2942 ± 109 ngATP/mgVSS at 1.0 V. Analysis of the changes in microbial composition indicated enrichment of Alistipes and Lutispora at 1.0 V due to the ability of these genera to directly transfer electrons with conductive surface. On the other hand, no change was observed in the microbial community in the case of non-conductive carriers. Results of this study showed that electro-assisted biodegradation of DX at low potentials is possible through two different mechanisms (oxygen production and direct electron transfer with electrode) which makes this technique flexible and cost-effective. The novelty of this work lies in exploring the use of electrical assistance to enhance the biodegradation of DX in the presence of CB1190 and the microbial community. This study more specifically investigated lower potential than required water electrolysis potential, allowing microorganisms to be stimulated through mechanisms unrelated to oxygen generation.


Asunto(s)
Actinomycetales , Microbiota , Actinomycetales/metabolismo , Biodegradación Ambiental , Biopelículas , Agua/metabolismo , Oxígeno/metabolismo
2.
Biodegradation ; 34(3): 283-300, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808270

RESUMEN

The potential of a native digestate microbial community for 1,4-dioxane (DX) biodegradation was evaluated under low dissolved oxygen (DO) concentrations (1-3 mg/L) under different conditions in terms of electron acceptors, co-substrates, co-contaminants and temperature. Complete DX biodegradation (detection limit of 0.01 mg/L) of initial 25 mg/L was achieved in 119 days under low DO concentrations, while complete biodegradation happened faster at 91 and 77 days, respectively in nitrate-amended and aerated conditions. In addition, conducting biodegradation at 30 ˚C showed that the time required for complete DX biodegradation in unamended flasks reduced from 119 days in ambient condition (20-25 °C) to 84 days. Oxalic acid, which is a common metabolite of DX biodegradation was identified in the flasks under different treatments including unamended, nitrate-amended and aerated conditions. Furthermore, transition of the microbial community was monitored during the DX biodegradation period. While the overall richness and diversity of the microbial community decreased, several families of known DX-degrading bacteria such as Pseudonocardiaceae, Xanthobacteraceae and Chitinophagaceae were able to maintain and grow in different electron-accepting conditions. The results suggested that DX biodegradation under low DO concentrations, where no external aeration was provided, is possible by the digestate microbial community, which can be helpful to the ongoing research for DX bioremediation and natural attenuation.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Nitratos , Electrones
3.
Environ Technol ; : 1-17, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749305

RESUMEN

Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA