Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J AOAC Int ; 94(1): 259-72, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21391503

RESUMEN

Clostridium difficile is a strict anaerobic spore-forming bacterium, and an increasingly common nosocomial pathogen. The U.S. Environmental Protection Agency (EPA) is responsible for the registration of disinfectants, including products designed to treat environmental surfaces contaminated with spores of C. difficile. Product efficacy data are required for registration; however, there is a lack of methodology for generating high-quality spore suspensions for evaluating product performance. As such, a study was carried out to select a suitable C. difficile strain and to develop a stand-alone method to prepare a spore suspension that meets specific criteria necessary for quantitative testing of disinfectants. The criteria are: (1) a spore titer of > 8 log10/mL, (2) > or = 90% spores to vegetative cells, and (3) resistance of spores (determined by viability) to 2.5 M hydrochloric acid (HCl). Several strains of C. difficile (toxigenic and nontoxigenic) were grown on various media (solid and liquid) for varying lengths of time to determine the best combination of incubation conditions and media to optimize spore production and quality. Once the spore production procedure was optimized, a toxigenic strain of C. difficile [American Type Culture Collection (ATCC) 43598] was selected for use in trials to verify repeatability from one production run to the next. The spore suspension was initiated by spreading vegetative cells of C. difficile (ATCC 43598) on CDC anaerobic 5% sheep blood agar plates and incubating for 7-10 days at 36 +/- 1 degrees C under anaerobic conditions. Spores were harvested when > or = 90% of the cells converted to spores as determined by observation using phase-contrast microscopy. The spores were washed three times with saline-Tween-80, resuspended in cold deionized water, heated to 70 degrees C for 10 min, evaluated microscopically for quality, and enumerated on cycloserine-cefoxitin-fructose agar containing horse blood and taurocholate. The spore suspension was used to inoculate brushed stainless steel carriers (1 cm in diameter) with and without a soil load in accordance with the Standard Quantitative Carrier Disk Test Method (ASTM E-2197-02) to determine carrier load. Once it was determined that > 6 log10 spores/carrier could be recovered, spores were evaluated for resistance to HCI. The sporulation method presented in this report is simple and repeatable and results in spore suspension of high titer (> 8 log10/mL) and quality (> or = 90% spores to vegetative cells) that met acid resistance criteria (spores were resistant to 2.5 M HCI for 10 min). In addition, recovery from brushed stainless steel carriers with and without soil load was > 6 log10 spores/carrier. A 6 log10 performance standard was set forth in the EPA's interim guidance for generating data to support a label claim for effectiveness against C. difficile spores on hard, nonporous surfaces. This precollaborative investigation successfully demonstrated the use of a methodology for in vitro production of C. difficile spores (ATCC 43598) necessary for conducting efficacy tests. A proposal will be submitted to the AOAC INTERNATIONAL Methods Committee on Antimicrobial Efficacy Testing for a collaborative study; see Appendix.


Asunto(s)
Clostridioides difficile/efectos de los fármacos , Desinfectantes/farmacología , Esporas Bacterianas/efectos de los fármacos , Clostridioides difficile/aislamiento & purificación , Clostridioides difficile/fisiología , Microbiología Ambiental , Pruebas de Sensibilidad Microbiana , Técnicas Microbiológicas , Esporas Bacterianas/aislamiento & purificación , Estados Unidos , United States Environmental Protection Agency
2.
J AOAC Int ; 90(3): 825-33, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17580636

RESUMEN

AOAC Method 966.04, the Sporicidal Activity of Disinfectants Test, is a carrier-based test that provides a qualitative measure of product efficacy against spores of Bacillus subtilis and Clostridium sporogenes. For regulatory purposes, Method 966.04 is accepted by the U.S. Environmental Protection Agency (EPA) and the U.S. Food and Drug Administration (FDA) for the generation of product performance data for sporicides and sterilants. In this study, we report on findings associated with proposed improvements (modifications) to the Clostridium component of the method. Egg meat medium (EMM), the culture medium for C. sporogenes currently specified in the method, is no longer commercially available and finding a suitable replacement is critical. In addition, the use of a nonstandardized extract of raw soil as an amendment to EMM, as stipulated in the current method, may result in a highly variable spore suspension. The primary focus of this study was to find replacements for EMM and soil extract. A carrier count procedure, the establishment of target carrier counts (spores/carrier), and a neutralization confirmation procedure were also evaluated. The study was limited to liquid products tested against Clostridium on a hard surface carrier (porcelain penicylinder). Spore suspensions of C. sporogenes were generated using: (1) EMM with soil extract (EMM/SE), (2) cooked meat medium with soil extract (CMM/SE), and (3) cooked meat medium with 5 microg/mL manganese sulfate (CMM/MnSO4). The titer of the spore suspension, carrier counts, resistance to hydrochloric acid (HCI), and efficacy against 3 liquid sporicidal agents were used to evaluate the potential of CMM and MnSO4 as replacements. The study was performed by the EPA Office of Pesticide Programs Microbiology Laboratory, Fort Meade, MD. Use of CMM/SE and CMM/MnSO4 resulted in comparable results for titer of spore suspensions (approximately 10(8) spores/mL) and carrier counts (approximately 3 x 10(6) spores/carrier). The carrier counts for the EMM/SE were approximately 1 log lower than CMM-based treatments; however, no attempt was made to dilute the CMM spore suspensions prior to carrier inoculation to reduce the carrier counts for CMM. Resistance of spores to 2.5 M HCI was acceptable across the 3 media types. Treatments for comparative efficacy testing were designed to provide a range of sporicidal activity, i.e., high and low efficacy treatments. Sodium hypochlorite (bleach), hydrogen peroxide/peracetic acid, and glutaraldehyde were used as test chemicals. The number of carriers resulting in growth (positive) for the low treatments for all 3 chemicals ranged from 9 to 59 out of 60 across the 3 media types--EMM exhibited fewer positives overall. The high efficacy treatments for sodium hypochlorite and hydrogen peroxide/peracetic acid yielded a range of 0 to 2 positives out of 60 across the 3 media. However, the high glutaraldehyde treatment generated 3, 20, and 20 positives out of 60 for the EMM/SE, CMM/SE, and CMM/MnSO4, respectively. The lower number of positive carriers for EMM/SE may be due to the reduced carrier counts. CMM, either with SE or MnSO4, appears to be a suitable replacement for EMM/SE. On the basis of the results of this study, the Study Director recommends that CMM/MnSO4 and the spore enumeration target carrier count and neutralization procedures be considered for collaborative study to officially modify the Clostridium x porcelain component of Method 966.04.


Asunto(s)
Clostridium/metabolismo , Análisis de los Alimentos/métodos , Contaminación de Alimentos , Compuestos de Manganeso/farmacología , Carne/microbiología , Sulfatos/farmacología , Bacillus subtilis/metabolismo , Culinaria , Desinfectantes/farmacología , Huevos/microbiología , Compuestos de Manganeso/química , Reproducibilidad de los Resultados , Hipoclorito de Sodio/farmacología , Microbiología del Suelo , Sulfatos/química , Estados Unidos , United States Environmental Protection Agency , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA