Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28969, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38617967

RESUMEN

Plant-based hard capsules have gained considerable attention because of their great properties. Accordingly, designing and developing of these kinds of capsules will be a difficult task. Herein, an innovative pullulan-based hard capsule formulation was prepared for the first time. A series of characterization approaches, including Fourier transform infrared, field emission scanning electron microscope, and rheology analysis, were utilized to figure out the straightforward preparation of a designed hard capsule. Many tests and experiments were performed to achieve the optimum capsule formulation. Based on the obtained results, specifications such as uniform downfall and non-desirable adhesion, and other ideal characteristics of the capsule display the critical function. The gelling promoter of divalent cationic salts is more beneficial than its single-valent counterparts. With respect to the key role of gelling promoter, the presence of chosen MgSO4.7H2O salt and the source of selected carrageenan are important parameters to achieve optimal formulation. Moreover, field emission scanning electron microscope images illustrate that the weight ratio of 3.5 (gelling agent to salt) displays uniform surface morphology without any impurities or other foreign materials. Likewise, the outcomes of the rheology test also illustrated that the weight ratio of 3.5 is preferable. Considering the different weight ratios, the benefits of a weight ratio of 3.5 outweigh the other investigated ratios. Overall, the current research addresses substantial information about developing pullulan-based hard capsules for target usage.

2.
ACS Omega ; 8(12): 11293-11303, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008088

RESUMEN

Capsules are popular oral dosage forms because of their ease of production. They are widespread pharmaceutical products. Hard capsules are preferred dosage forms for new medicines undergoing clinical tests because they do not require expansive formulation development. Functional capsules with built-in gastroresistance, aside from the traditional hard-gelatin or cellulose-based vegetarian capsules, would be beneficial. In this research, the effect of polyethylene glycol-4000 (PEG-4000) was investigated on the formulation of uncoated enteric hard capsules based on hypromellose phthalate (HPMCPh) and gelatin. Three different formulations based on HPMCPh, gelatin, and PEG-4000 were tested to achieve the optimal formulation for the industrial production of hard enteric capsules with desired physicochemical and enteric properties. The results reveal that the capsules containing HPMCPh, gelatin, and PEG-4000 (F1) are stable in the stomach environment (pH = 1.2) for 120 min, and during this time, no release happens. The outcomes also demonstrate that PEG-4000 blocks the pores and improves enteric hard capsule formulation. In this research, we present a specific procedure for manufacturing uncoated enteric hard capsules on an industrial scale that does not require an extra coating step for the first time. The industrial-scale validated process can considerably reduce the cost of manufacturing standard enteric-coated dosage forms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA