Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 31(42): 424003, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32597397

RESUMEN

During the last decade, graphene foam emerged as a promising high porosity 3-dimensional (3D) structure for various applications. More specifically, it has attracted significant interest as a solution for thermal management in electronics. In this study, we investigate the possibility to use such porous materials as a heat sink and a container for a phase change material (PCM). Graphene foam (GF) was produced using chemical vapor deposition (CVD) process and attached to a thermal test chip using sintered silver nanoparticles (Ag NPs). The thermal conductivity of the graphene foam reached 1.3 W m-1 K-1, while the addition of Ag as a graphene foam silver composite (GF/Ag) enhanced further its effective thermal conductivity by 54%. Comparatively to nickel foam, GF and GF/Ag showed lower junction temperatures thanks to higher effective thermal conductivity and a better contact. A finite element model was developed to simulate the fluid flow through the foam structure model and showed a positive and a non-negligible contributions of the secondary microchannel within the graphene foam. A ratio of 15 times was found between the convective heat flux within the primary and secondary microchannel. Our paper successfully demonstrates the possibility of using such 3D porous material as a PCM container and heat sink and highlight the advantage of using the carbon-based high porosity material to take advantage of its additional secondary porosity.

2.
Small ; : e1801346, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29926528

RESUMEN

Due to substantial phonon scattering induced by various structural defects, the in-plane thermal conductivity (K) of graphene films (GFs) is still inferior to the commercial pyrolytic graphite sheet (PGS). Here, the problem is solved by engineering the structures of GFs in the aspects of grain size, film alignment, and thickness, and interlayer binding energy. The maximum K of GFs reaches to 3200 W m-1 K-1 and outperforms PGS by 60%. The superior K of GFs is strongly related to its large and intact grains, which are over four times larger than the best PGS. The large smooth features about 11 µm and good layer alignment of GFs also benefit on reducing phonon scattering induced by wrinkles/defects. In addition, the presence of substantial turbostratic-stacking graphene is found up to 37% in thin GFs. The lacking of order in turbostratic-stacking graphene leads to very weak interlayer binding energy, which can significantly decrease the phonon interfacial scattering. The GFs also demonstrate excellent flexibility and high tensile strength, which is about three times higher than PGS. Therefore, GFs with optimized structures and properties show great potentials in thermal management of form-factor-driven electronics and other high-power-driven systems.

3.
ACS Appl Mater Interfaces ; 9(17): 14555-14560, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28429587

RESUMEN

We demonstrate the thermal conductivity enhancement of the vertically aligned carbon nanotube (CNT) arrays (from ∼15.5 to 29.5 W/mK, ∼90% increase) by encapsulating outer boron nitride nanotube (BNNT, 0.97 nm-thick with ∼3-4 walls). The heat transfer enhancement mechanism of the coaxial C@BNNT was further revealed by molecular dynamics simulations. Because of their highly coherent lattice structures, the outer BNNT serves as additional heat conducting path without impairing the thermal conductance of inner CNT. This work provides deep insights into tailoring the heat transfer of arbitrary CNT arrays and will enable their broader applications as thermal interface material.

4.
Nat Commun ; 7: 11281, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27125636

RESUMEN

The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm(-2). Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA