Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(8): eabg2469, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35196092

RESUMEN

Antiferromagnet spintronic devices eliminate or mitigate long-range dipolar fields, thereby promising ultrafast operation. For spin transport electronics, one of the most successful strategies is the creation of metallic synthetic antiferromagnets, which, to date, have largely been formed from transition metals and their alloys. Here, we show that synthetic antiferrimagnetic sandwiches can be formed using exchange coupling spacer layers composed of atomically ordered RuAl layers and ultrathin, perpendicularly magnetized, tetragonal ferrimagnetic Heusler layers. Chemically ordered RuAl layers can both be grown on top of a Heusler layer and allow for the growth of ordered Heusler layers deposited on top of it that are as thin as one unit cell. The RuAl spacer layer gives rise to a thickness-dependent oscillatory interlayer coupling with an oscillation period of ~1.1 nm. The observation of ultrathin ordered synthetic antiferrimagnets substantially expands the family of synthetic antiferromagnets and magnetic compounds for spintronic technologies.

2.
Phys Rev Lett ; 123(19): 197204, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31765192

RESUMEN

We present a comprehensive experimental and numerical study of magnetization dynamics in a thin metallic film triggered by single-cycle terahertz pulses of ∼20 MV/m electric field amplitude and ∼1 ps duration. The experimental dynamics is probed using the femtosecond magneto-optical Kerr effect, and it is reproduced numerically using macrospin simulations. The magnetization dynamics can be decomposed in three distinct processes: a coherent precession of the magnetization around the terahertz magnetic field, an ultrafast demagnetization that suddenly changes the anisotropy of the film, and a uniform precession around the equilibrium effective field that is relaxed on the nanosecond time scale, consistent with a Gilbert damping process. Macrospin simulations quantitatively reproduce the observed dynamics, and allow us to predict that novel nonlinear magnetization dynamics regimes can be attained with existing tabletop terahertz sources.

3.
Nano Lett ; 19(10): 6751-6755, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31433663

RESUMEN

The recent surge of interest in brain-inspired computing and power-efficient electronics has dramatically bolstered development of computation and communication using neuron-like spiking signals. Devices that can produce rapid and energy-efficient spiking could significantly advance these applications. Here we demonstrate direct current or voltage-driven periodic spiking with sub-20 ns pulse widths from a single device composed of a thin VO2 film with a metallic carbon nanotube as a nanoscale heater, without using an external capacitor. Compared with VO2-only devices, adding the nanotube heater dramatically decreases the transient duration and pulse energy, and increases the spiking frequency, by up to 3 orders of magnitude. This is caused by heating and cooling of the VO2 across its insulator-metal transition being localized to a nanoscale conduction channel in an otherwise bulk medium. This result provides an important component of energy-efficient neuromorphic computing systems and a lithography-free technique for energy-scaling of electronic devices that operate via bulk mechanisms.

4.
ACS Nano ; 13(10): 11070-11077, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31393698

RESUMEN

Vanadium dioxide (VO2) has been widely studied for its rich physics and potential applications, undergoing a prominent insulator-metal transition (IMT) near room temperature. The transition mechanism remains highly debated, and little is known about the IMT at nanoscale dimensions. To shed light on this problem, here we use ∼1 nm-wide carbon nanotube (CNT) heaters to trigger the IMT in VO2. Single metallic CNTs switch the adjacent VO2 at less than half the voltage and power required by control devices without a CNT, with switching power as low as ∼85 µW at 300 nm device lengths. We also obtain potential and temperature maps of devices during operation using Kelvin probe microscopy and scanning thermal microscopy. Comparing these with three-dimensional electrothermal simulations, we find that the local heating of the VO2 by the CNT plays a key role in the IMT. These results demonstrate the ability to trigger IMT in VO2 using nanoscale heaters and highlight the significance of thermal engineering to improve device behavior.

5.
ACS Appl Mater Interfaces ; 11(1): 489-498, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525380

RESUMEN

Miniature batteries can accelerate the development of mobile electronics by providing sufficient energy to power small devices. Typical microbatteries commonly use thin-film inorganic electrodes based on Li-ion insertion reaction. However, they rely on the complicated thin-film synthesis method of inorganics containing many elements. Graphene, one atomic layer thick carbon sheet, has diverse physical and chemical properties and is compatible with conventional micron-scale device fabrication. Here, we study the use of chemical vapor deposition (CVD) grown monolayer graphene in a two-dimensional configuration, as a future Li-oxygen microbattery cathode. By maximizing the dissolution of discharge intermediates, we obtain 2610 Ah/ggraphene of capacity corresponding to 20% higher areal cathode energy density and 2.7 times higher cathode specific energy than that can be derived from the same volume or mass of conventional Li-ion battery cathode material. Furthermore, a clear observation on the discharge reaction on composite electrodes and their role in the charging reaction was made, thanks to the two-dimensional monolayer graphene Li-oxygen battery cathode. We demonstrate an easy integration of two-dimensional CVD graphene cathode into microscale devices by simply transferring or coating the target device substrate with flexible graphene layers. The ability to integrate and use monolayer graphene on arbitrary device substrates as well as precise control over a chemical derivation of the carbon interface can have a radical impact on future energy-storage devices.

6.
Nat Commun ; 9(1): 4653, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405099

RESUMEN

Heusler alloys are a large family of compounds with complex and tunable magnetic properties, intimately connected to the atomic scale ordering of their constituent elements. We show that using a chemical templating technique of atomically ordered X'Z' (X' = Co; Z' = Al, Ga, Ge, Sn) underlayers, we can achieve near bulk-like magnetic properties in tetragonally distorted Heusler films, even at room temperature. Excellent perpendicular magnetic anisotropy is found in ferrimagnetic X3Z (X = Mn; Z = Ge, Sn, Sb) films, just 1 or 2 unit-cells thick. Racetracks formed from these films sustain current-induced domain wall motion with velocities of more than 120 m s-1, at current densities up to six times lower than conventional ferromagnetic materials. We find evidence for a significant bulk chiral Dzyaloshinskii-Moriya exchange interaction, whose field strength can be systematically tuned by an order of magnitude. Our work is an important step towards practical applications of Heusler compounds for spintronic technologies.

7.
Nano Lett ; 17(5): 2796-2801, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28368120

RESUMEN

It has recently been shown that the metal-insulator transition in vanadium dioxide epitaxial films can be suppressed and the material made metallic to low temperatures by ionic liquid gating due to migration of oxygen. The gating is only possible on certain crystal facets where volume channels along the VO2's rutile c-axis intersect the surface. Here, we fabricate bars with the c-axis in plane and oriented parallel to or perpendicular to the length of the bars. We show that only bars with the c-axis perpendicular to the bars, for which the volume channels are accessible from the sides of the bar, can be metallized by ionic liquid gating. Moreover, we find that bars up to at least 0.5 µm wide can be fully gated, demonstrating the possibility of the electric field induced migration of oxygen over very long distances, ∼5 times longer than previously observed.

8.
Adv Mater ; 29(10)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28092134

RESUMEN

A conducting 2D electron gas (2DEG) is formed at the interface between epitaxial LaFeO3 layers >3 unit cells thick and the surface of SrTiO3 single crystals. The 2DEG is exquisitely sensitive to cation intermixing and oxygen nonstoichiometry. It is shown that the latter thus allows the controllable formation of the 2DEG via ionic liquid gating, thereby forming a nonvolatile switch.

9.
Proc Natl Acad Sci U S A ; 113(40): 11148-11151, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647884

RESUMEN

Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3 Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ∼1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

10.
Nano Lett ; 16(9): 5475-81, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27479461

RESUMEN

Ionic liquid gating has been shown to metallize initially insulating layers formed from several different oxide materials. Of these vanadium dioxide (VO2) is of especial interest because it itself is metallic at temperatures above its metal-insulator transition. Recent studies have shown that the mechanism of ionic liquid gated induced metallization is entirely distinct from that of the thermally driven metal-insulator transition and is derived from oxygen migration through volume channels along the (001) direction of the rutile structure of VO2. Here we show that it is possible to metallize the entire volume of 10 nm thick layers of VO2 buried under layers of rutile titanium dioxide (TiO2) up to 10 nm thick. Key to this process is the alignment of volume channels in the respective oxide layers, which have the same rutile structure with clamped in-plane lattice constants. The metallization of the VO2 layers is accompanied by large structural expansions of up to ∼6.5% in the out-of-plane direction, but the structure of the TiO2 layer is hardly affected by gating. The TiO2 layers become weakly conducting during the gating process, but in contrast to the VO2 layers, the conductivity disappears on exposure to air. Indeed, even after air exposure, X-ray photoelectron spectroscopy studies show that the VO2 films have a reduced oxygen content after metallization. Ionic liquid gating of the VO2 films through initially insulating TiO2 layers is not consistent with conventional models that have assumed the gate induced carriers are of electrostatic origin.

11.
Adv Mater ; 28(26): 5284-92, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27159503

RESUMEN

Reversible metallization of band and Mott insulators by ionic-liquid gating is accompanied by significant structural changes. A change in conductivity of seven orders of magnitude at room temperature is found in epitaxial films of WO3 with an associated monoclinic-to-cubic structural reorganization. The migration of oxygen ions along open volume channels is the underlying mechanism.

12.
Sci Rep ; 6: 21999, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26915398

RESUMEN

Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

13.
Nat Commun ; 7: 10276, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26776829

RESUMEN

Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.

14.
Opt Express ; 23(4): 4340-7, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836470

RESUMEN

Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO(2) film with EUV diffraction from the optically excited sample. The VO(2) exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

15.
Proc Natl Acad Sci U S A ; 112(4): 1013-8, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583517

RESUMEN

The use of electric fields to alter the conductivity of correlated electron oxides is a powerful tool to probe their fundamental nature as well as for the possibility of developing novel electronic devices. Vanadium dioxide (VO2) is an archetypical correlated electron system that displays a temperature-controlled insulating to metal phase transition near room temperature. Recently, ionic liquid gating, which allows for very high electric fields, has been shown to induce a metallic state to low temperatures in the insulating phase of epitaxially grown thin films of VO2. Surprisingly, the entire film becomes electrically conducting. Here, we show, from in situ synchrotron X-ray diffraction and absorption experiments, that the whole film undergoes giant, structural changes on gating in which the lattice expands by up to ∼3% near room temperature, in contrast to the 10 times smaller (∼0.3%) contraction when the system is thermally metallized. Remarkably, these structural changes are fully reversible on reverse gating. Moreover, we find these structural changes and the concomitant metallization are highly dependent on the VO2 crystal facet, which we relate to the ease of electric-field-induced motion of oxygen ions along chains of edge-sharing VO6 octahedra that exist along the (rutile) c axis.

16.
ACS Nano ; 8(6): 5784-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24847770

RESUMEN

The development of new phases of matter at oxide interfaces and surfaces by extrinsic electric fields is of considerable significance both scientifically and technologically. Vanadium dioxide (VO2), a strongly correlated material, exhibits a temperature-driven metal-to-insulator transition, which is accompanied by a structural transformation from rutile (high-temperature metallic phase) to monoclinic (low-temperature insulator phase). Recently, it was discovered that a low-temperature conducting state emerges in VO2 thin films upon gating with a liquid electrolyte. Using photoemission spectroscopy measurements of the core and valence band states of electrolyte-gated VO2 thin films, we show that electronic features in the gate-induced conducting phase are distinct from those of the temperature-induced rutile metallic phase. Moreover, polarization-dependent measurements reveal that the V 3d orbital ordering, which is characteristic of the monoclinic insulating phase, is partially preserved in the gate-induced metallic phase, whereas the thermally induced metallic phase displays no such orbital ordering. Angle-dependent measurements show that the electronic structure of the gate-induced metallic phase persists to a depth of at least ∼40 Å, the escape depth of the high-energy photoexcited electrons used here. The distinct electronic structures of the gate-induced and thermally induced metallic phases in VO2 thin films reflect the distinct mechanisms by which these states originate. The electronic characteristics of the gate-induced metallic state are consistent with the formation of oxygen vacancies from electrolyte gating.

17.
Nat Nanotechnol ; 9(6): 453-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747840

RESUMEN

Strong interactions, or correlations, between the d or f electrons in transition-metal oxides lead to various types of metal-insulator transitions that can be triggered by external parameters such as temperature, pressure, doping, magnetic fields and electric fields. Electric-field-induced metallization of such materials from their insulating states could enable a new class of ultrafast electronic switches and latches. However, significant questions remain about the detailed nature of the switching process. Here, we show, in the canonical metal-to-insulator transition system V2O3, that ultrafast voltage pulses result in its metallization only after an incubation time that ranges from ∼150 ps to many nanoseconds, depending on the electric field strength. We show that these incubation times can be accounted for by purely thermal effects and that intrinsic electronic-switching mechanisms may only be revealed using larger electric fields at even shorter timescales.

18.
ACS Nano ; 7(9): 8074-81, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23962081

RESUMEN

The electric-field-induced metallization of insulating oxides is a powerful means of exploring and creating exotic electronic states. Here we show by the use of ionic liquid gating that two distinct facets of rutile TiO2, namely, (101) and (001), show clear evidence of metallization, with a disorder-induced metal-insulator transition at low temperatures, whereas two other facets, (110) and (100), show no substantial effects. This facet-dependent metallization can be correlated with the surface energy of the respective crystal facet and, thus, is consistent with oxygen vacancy formation and diffusion that results from the electric fields generated within the electric double layers at the ionic liquid/TiO2 interface. These effects take place at even relatively modest gate voltages.

19.
Nano Lett ; 13(10): 4675-8, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23978006

RESUMEN

Ionic liquid gating of three terminal field effect transistor devices with channels formed from SrTiO3(001) single crystals induces a metallic state in the channel. We show that the metallization is strongly affected by the presence of oxygen gas introduced external to the device whereas argon and nitrogen have no effect. The suppression of the gating effect is consistent with electric field induced migration of oxygen that we model by oxygen-induced carrier annihilation.


Asunto(s)
Líquidos Iónicos/química , Óxidos/química , Oxígeno/química , Estroncio/química , Titanio/química , Conductividad Eléctrica , Activación del Canal Iónico
20.
Science ; 339(6126): 1402-5, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23520104

RESUMEN

Electrolyte gating with ionic liquids is a powerful tool for inducing novel conducting phases in correlated insulators. An archetypal correlated material is vanadium dioxide (VO(2)), which is insulating only at temperatures below a characteristic phase transition temperature. We show that electrolyte gating of epitaxial thin films of VO(2) suppresses the metal-to-insulator transition and stabilizes the metallic phase to temperatures below 5 kelvin, even after the ionic liquid is completely removed. We found that electrolyte gating of VO(2) leads not to electrostatically induced carriers but instead to the electric field-induced creation of oxygen vacancies, with consequent migration of oxygen from the oxide film into the ionic liquid. This mechanism should be taken into account in the interpretation of ionic liquid gating experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA