Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 44(1): 114-128, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32750795

RESUMEN

This article presents a photometric stereo method based on deep learning. One of the major difficulties in photometric stereo is designing an appropriate reflectance model that is both capable of representing real-world reflectances and computationally tractable for deriving surface normal. Unlike previous photometric stereo methods that rely on a simplified parametric image formation model, such as the Lambert's model, the proposed method aims at establishing a flexible mapping between complex reflectance observations and surface normal using a deep neural network. In addition, the proposed method predicts the reflectance, which allows us to understand surface materials and to render the scene under arbitrary lighting conditions. As a result, we propose a deep photometric stereo network (DPSN) that takes reflectance observations under varying light directions and infers the surface normal and reflectance in a per-pixel manner. To make the DPSN applicable to real-world scenes, a dataset of measured BRDFs (MERL BRDF dataset) has been used for training the network. Evaluation using simulation and real-world scenes shows the effectiveness of the proposed approach in estimating both surface normal and reflectances.

2.
Commun Biol ; 3(1): 633, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127951

RESUMEN

Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals' lives, including their behaviours, physiology, social interactions, and external environment. However, bio-loggers have short runtimes when collecting data from resource-intensive (high-cost) sensors. This study proposes using AI on board video-loggers in order to use low-cost sensors (e.g., accelerometers) to automatically detect and record complex target behaviours that are of interest, reserving their devices' limited resources for just those moments. We demonstrate our method on bio-loggers attached to seabirds including gulls and shearwaters, where it captured target videos with 15 times the precision of a baseline periodic-sampling method. Our work will provide motivation for more widespread adoption of AI in bio-loggers, helping us to shed light onto until now hidden aspects of animals' lives.


Asunto(s)
Aves , Monitoreo del Ambiente/métodos , Aprendizaje Automático , Animales , Conducta Animal , Sistemas de Información Geográfica , Monitoreo Fisiológico/instrumentación , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA