Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Physiol Meas ; 45(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663430

RESUMEN

Objective.The EPHNOGRAM project aimed to develop a low-cost, low-power device for simultaneous electrocardiogram (ECG) and phonocardiogram (PCG) recording, with additional channels for environmental audio to enhance PCG through active noise cancellation. The objective was to study multimodal electro-mechanical activities of the heart, offering insights into the differences and synergies between these modalities during various cardiac activity levels.Approach.We developed and tested several hardware prototypes of a simultaneous ECG-PCG acquisition device. Using this technology, we collected simultaneous ECG and PCG data from 24 healthy adults during different physical activities, including resting, walking, running, and stationary biking, in an indoor fitness center. The data were annotated using a robust software that we developed for detecting ECG R-peaks and PCG S1 and S2 components, and overseen by a human expert. We also developed machine learning models using ECG-based, PCG-based, and joint ECG-PCG features, like R-R and S1-S2 intervals, to classify physical activities and analyze electro-mechanical dynamics.Main results.The results show a significant coupling between ECG and PCG components, especially during high-intensity exercise. Notable micro-variations in S2-based heart rate show differences in the heart's electrical and mechanical functions. The Lomb-Scargle periodogram and approximate entropy analyses confirm the higher volatility of S2-based heart rate compared to ECG-based heart rate. Correlation analysis shows stronger coupling between R-R and R-S1 intervals during high-intensity activities. Hybrid ECG-PCG features, like the R-S2 interval, were identified as more informative for physical activity classification through mRMR feature selection and SHAP value analysis.Significance.The EPHNOGRAM database, is available on PhysioNet. The database enhances our understanding of cardiac function, enabling future studies on the heart's mechanical and electrical interrelationships. The results of this study can contribute to improved cardiac condition diagnoses. Additionally, the designed hardware has the potential for integration into wearable devices and the development of multimodal stress test technologies.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Humanos , Electrocardiografía/instrumentación , Electrocardiografía/métodos , Fonocardiografía/instrumentación , Masculino , Adulto , Bases de Datos Factuales , Femenino , Factores de Tiempo , Adulto Joven , Aprendizaje Automático , Frecuencia Cardíaca/fisiología
2.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543993

RESUMEN

Regular blood pressure (BP) monitoring in clinical and ambulatory settings plays a crucial role in the prevention, diagnosis, treatment, and management of cardiovascular diseases. Recently, the widespread adoption of ambulatory BP measurement devices has been predominantly driven by the increased prevalence of hypertension and its associated risks and clinical conditions. Recent guidelines advocate for regular BP monitoring as part of regular clinical visits or even at home. This increased utilization of BP measurement technologies has raised significant concerns regarding the accuracy of reported BP values across settings. In this survey, which focuses mainly on cuff-based BP monitoring technologies, we highlight how BP measurements can demonstrate substantial biases and variances due to factors such as measurement and device errors, demographics, and body habitus. With these inherent biases, the development of a new generation of cuff-based BP devices that use artificial intelligence (AI) has significant potential. We present future avenues where AI-assisted technologies can leverage the extensive clinical literature on BP-related studies together with the large collections of BP records available in electronic health records. These resources can be combined with machine learning approaches, including deep learning and Bayesian inference, to remove BP measurement biases and provide individualized BP-related cardiovascular risk indexes.


Asunto(s)
Inteligencia Artificial , Hipertensión , Humanos , Presión Sanguínea/fisiología , Teorema de Bayes , Determinación de la Presión Sanguínea , Hipertensión/diagnóstico
3.
Bioelectron Med ; 10(1): 4, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321561

RESUMEN

BACKGROUND: Seizure detection is challenging outside the clinical environment due to the lack of comfortable, reliable, and practical long-term neurophysiological monitoring devices. We developed a novel, discreet, unobstructive in-ear sensing system that enables long-term electroencephalography (EEG) recording. This is the first study we are aware of that systematically compares the seizure detection utility of in-ear EEG with that of simultaneously recorded intracranial EEG. In addition, we present a similar comparison between simultaneously recorded in-ear EEG and scalp EEG. METHODS: In this foundational research, we conducted a clinical feasibility study and validated the ability of the ear-EEG system to capture focal-onset seizures against 1255 hrs of simultaneous ear-EEG data along with scalp or intracranial EEG in 20 patients with refractory focal epilepsy (11 with scalp EEG, 8 with intracranial EEG, and 1 with both). RESULTS: In a blinded, independent review of the ear-EEG signals, two epileptologists were able to detect 86.4% of the seizures that were subsequently identified using the clinical gold standard EEG modalities, with a false detection rate of 0.1 per day, well below what has been reported for ambulatory monitoring. The few seizures not detected on the ear-EEG signals emanated from deep within the mesial temporal lobe or extra-temporally and remained very focal, without significant propagation. Following multiple sessions of recording for a median continuous wear time of 13 hrs, patients reported a high degree of tolerance for the device, with only minor adverse events reported by the scalp EEG cohort. CONCLUSIONS: These preliminary results demonstrate the potential of using ear-EEG to enable routine collection of complementary, prolonged, and remote neurophysiological evidence, which may permit real-time detection of paroxysmal events such as seizures and epileptiform discharges. This study suggests that the ear-EEG device may assist clinicians in making an epilepsy diagnosis, assessing treatment efficacy, and optimizing medication titration.

4.
ArXiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36713244

RESUMEN

OBJECTIVE: Gaussian Processes (GP)-based filters, which have been effectively used for various applications including electrocardiogram (ECG) filtering can be computationally demanding and the choice of their hyperparameters is typically ad hoc. METHODS: We develop a data-driven GP filter to address both issues, using the notion of the ECG phase domain -- a time-warped representation of the ECG beats onto a fixed number of samples and aligned R-peaks, which is assumed to follow a Gaussian distribution. Under this assumption, the computation of the sample mean and covariance matrix is simplified, enabling an efficient implementation of the GP filter in a data-driven manner, with no ad hoc hyperparameters. The proposed filter is evaluated and compared with a state-of-the-art wavelet-based filter, on the PhysioNet QT Database. The performance is evaluated by measuring the signal-to-noise ratio (SNR) improvement of the filter at SNR levels ranging from -5 to 30dB, in 5dB steps, using additive noise. For a clinical evaluation, the error between the estimated QT-intervals of the original and filtered signals is measured and compared with the benchmark filter. RESULTS: It is shown that the proposed GP filter outperforms the benchmark filter for all the tested noise levels. It also outperforms the state-of-the-art filter in terms of QT-interval estimation error bias and variance. CONCLUSION: The proposed GP filter is a versatile technique for preprocessing the ECG in clinical and research applications, is applicable to ECG of arbitrary lengths and sampling frequencies, and provides confidence intervals for its performance.

5.
Crit Care Med ; 51(12): 1802-1811, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855659

RESUMEN

OBJECTIVES: To develop the International Cardiac Arrest Research (I-CARE), a harmonized multicenter clinical and electroencephalography database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. DESIGN: Multicenter cohort, partly prospective and partly retrospective. SETTING: Seven academic or teaching hospitals from the United States and Europe. PATIENTS: Individuals 16 years old or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous electroencephalography monitoring were included. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: Clinical and electroencephalography data were harmonized and stored in a common Waveform Database-compatible format. Automated spike frequency, background continuity, and artifact detection on electroencephalography were calculated with 10-second resolution and summarized hourly. Neurologic outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical data and 56,676 hours (3.9 terabytes) of continuous electroencephalography data for 1,020 patients. Most patients died ( n = 603, 59%), 48 (5%) had severe neurologic disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean electroencephalography recording duration depending on the neurologic outcome (range, 53-102 hr for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least 1 hour was seen in 258 patients (25%) (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least 1 hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. CONCLUSIONS: The I-CARE consortium electroencephalography database provides a comprehensive real-world clinical and electroencephalography dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal electroencephalography patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.


Asunto(s)
Coma , Paro Cardíaco , Humanos , Adolescente , Coma/diagnóstico , Estudios Retrospectivos , Estudios Prospectivos , Paro Cardíaco/diagnóstico , Electroencefalografía
6.
medRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693458

RESUMEN

Objective: To develop a harmonized multicenter clinical and electroencephalography (EEG) database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. Design: Multicenter cohort, partly prospective and partly retrospective. Setting: Seven academic or teaching hospitals from the U.S. and Europe. Patients: Individuals aged 16 or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous EEG monitoring were included. Interventions: not applicable. Measurements and Main Results: Clinical and EEG data were harmonized and stored in a common Waveform Database (WFDB)-compatible format. Automated spike frequency, background continuity, and artifact detection on EEG were calculated with 10 second resolution and summarized hourly. Neurological outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical and 56,676 hours (3.9 TB) of continuous EEG data for 1,020 patients. Most patients died (N=603, 59%), 48 (5%) had severe neurological disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean EEG recording duration depending on the neurological outcome (range 53-102h for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least one hour was seen in 258 (25%) patients (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least one hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. Conclusions: The International Cardiac Arrest Research (I-CARE) consortium database provides a comprehensive real-world clinical and EEG dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal EEG patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.

7.
Birth Defects Res ; 115(18): 1693-1707, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37681293

RESUMEN

INTRODUCTION: International Classification of Diseases (ICD) codes recorded in administrative data are often used to identify congenital heart defects (CHD). However, these codes may inaccurately identify true positive (TP) CHD individuals. CHD surveillance could be strengthened by accurate CHD identification in administrative records using machine learning (ML) algorithms. METHODS: To identify features relevant to accurate CHD identification, traditional ML models were applied to a validated dataset of 779 patients; encounter level data, including ICD-9-CM and CPT codes, from 2011 to 2013 at four US sites were utilized. Five-fold cross-validation determined overlapping important features that best predicted TP CHD individuals. Median values and 95% confidence intervals (CIs) of area under the receiver operating curve, positive predictive value (PPV), negative predictive value, sensitivity, specificity, and F1-score were compared across four ML models: Logistic Regression, Gaussian Naive Bayes, Random Forest, and eXtreme Gradient Boosting (XGBoost). RESULTS: Baseline PPV was 76.5% from expert clinician validation of ICD-9-CM CHD-related codes. Feature selection for ML decreased 7138 features to 10 that best predicted TP CHD cases. During training and testing, XGBoost performed the best in median accuracy (F1-score) and PPV, 0.84 (95% CI: 0.76, 0.91) and 0.94 (95% CI: 0.91, 0.96), respectively. When applied to the entire dataset, XGBoost revealed a median PPV of 0.94 (95% CI: 0.94, 0.95). CONCLUSIONS: Applying ML algorithms improved the accuracy of identifying TP CHD cases in comparison to ICD codes alone. Use of this technique to identify CHD cases would improve generalizability of results obtained from large datasets to the CHD patient population, enhancing public health surveillance efforts.


Asunto(s)
Cardiopatías Congénitas , Humanos , Teorema de Bayes , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/epidemiología , Valor Predictivo de las Pruebas , Algoritmos , Aprendizaje Automático
8.
PLOS Digit Health ; 2(9): e0000324, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37695769

RESUMEN

Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of cardiac auscultation in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds. For the Challenge, we sourced 5272 PCG recordings from 1452 primarily pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete training and inference code for their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, misdiagnosis, and treatment, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCG recordings. These algorithms represent a diversity of approaches from both academia and industry, including methods that use more traditional machine learning techniques with engineered clinical and statistical features as well as methods that rely primarily on deep learning models to discover informative features. The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing more accessible diagnostic screening in resource-constrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge.

9.
IEEE J Biomed Health Inform ; 27(8): 3856-3866, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37163396

RESUMEN

OBJECTIVE: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. METHODS: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. RESULTS: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. CONCLUSIONS: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. SIGNIFICANCE: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity, which may provide an enhanced classification of clinical outcomes.


Asunto(s)
Soplos Cardíacos , Ruidos Cardíacos , Humanos , Niño , Fonocardiografía/métodos , Soplos Cardíacos/diagnóstico , Auscultación Cardíaca/métodos , Algoritmos , Auscultación
10.
IEEE J Biomed Health Inform ; 27(5): 2501-2511, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37027652

RESUMEN

Assessing fetal development is essential to the provision of healthcare for both mothers and fetuses. In low- and middle-income countries, conditions that increase the risk of fetal growth restriction (FGR) are often more prevalent. In these regions, barriers to accessing healthcare and social services exacerbate fetal maternal health problems. One of these barriers is the lack of affordable diagnostic technologies. To address this issue, this work introduces an end-to-end algorithm applied to a low-cost, hand-held Doppler ultrasound device for estimating gestational age (GA), and by inference, FGR. The Doppler ultrasound signals used in this study were collected from 226 pregnancies (45 low birth weight at delivery) between 5 and 9 months GA by lay midwives in highland Guatemala. We designed a hierarchical deep sequence learning model with an attention mechanism to learn the normative dynamics of fetal cardiac activity in different stages of development. This resulted in a state-of-the-art GA estimation performance, with an average error of 0.79 months. This is close to the theoretical minimum for the given quantization level of one month. The model was then tested on Doppler recordings of the fetuses with low birth weight and the estimated GA was shown to be lower than the GA calculated from last menstruation. Thus, this could be interpreted as a potential sign of developmental retardation (or FGR) associated with low birth weight, and referral and intervention may be necessary.


Asunto(s)
Retardo del Crecimiento Fetal , Recién Nacido Pequeño para la Edad Gestacional , Embarazo , Recién Nacido , Femenino , Humanos , Edad Gestacional , Retardo del Crecimiento Fetal/diagnóstico por imagen , Ultrasonografía Prenatal
11.
IEEE J Biomed Health Inform ; 27(6): 2635-2646, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36264732

RESUMEN

Stethoscope-recorded chest sounds provide the opportunity for remote cardio-respiratory health monitoring of neonates. However, reliable monitoring requires high-quality heart and lung sounds. This paper presents novel artificial intelligence-based Non-negative Matrix Factorisation (NMF) and Non-negative Matrix Co-Factorisation (NMCF) methods for neonatal chest sound separation. To assess these methods and compare them with existing single-channel separation methods, an artificial mixture dataset was generated comprising heart, lung, and noise sounds. Signal-to-noise ratios were then calculated for these artificial mixtures. These methods were also tested on real-world noisy neonatal chest sounds and assessed based on vital sign estimation error, and a signal quality score of 1-5, developed in our previous works. Overall, both the proposed NMF and NMCF methods outperform the next best existing method by 2.7 dB to 11.6 dB for the artificial dataset, and 0.40 to 1.12 signal quality improvement for the real-world dataset. The median processing time for the sound separation of a 10 s recording was found to be 28.3 s for NMCF and 342 ms for NMF. With the stable and robust performance of our proposed methods, we believe these methods are useful to denoise neonatal heart and lung sounds in the real-world environment.


Asunto(s)
Ruidos Cardíacos , Estetoscopios , Recién Nacido , Humanos , Ruidos Respiratorios , Inteligencia Artificial , Ruido , Monitoreo Fisiológico , Algoritmos , Procesamiento de Señales Asistido por Computador
12.
Physiol Meas ; 43(12)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36541513

RESUMEN

Objectives.People with refractory epilepsy are overwhelmed by the uncertainty of their next seizures. Accurate prediction of future seizures could greatly improve the quality of life for these patients. New evidence suggests that seizure occurrences can have cyclical patterns for some patients. Even though these cyclicalities are not intuitive, they can be identified by machine learning (ML), to identify patients with predictable vs unpredictable seizure patterns.Approach.Self-reported seizure logs of 153 patients from the Human Epilepsy Project with more than three reported seizures (totaling 8337 seizures) were used to obtain inter-seizure interval time-series for training and evaluation of the forecasting models. Two classes of prediction methods were studied: (1) statistical approaches using Bayesian fusion of population-wise and individual-wise seizure patterns; and (2) ML-based algorithms including least squares, least absolute shrinkage and selection operator, support vector machine (SVM) regression, and long short-term memory regression. Leave-one-person-out cross-validation was used for training and evaluation, by training on seizure diaries of all except one subject and testing on the left-out subject.Main results.The leading forecasting models were the SVM regression and a statistical model that combined the median of population-wise seizure time-intervals with a test subject's prior seizure intervals. SVM was able to forecast 50%, 70%, 81%, 84%, and 87% of seizures of unseen subjects within 0, 1, 2, 3 to 4 d of mean absolute forecasting error, respectively. The subject-wise performances show that patients with more frequent seizures were generally better predicted.Significance.ML models can leverage non-random patterns within self-reported seizure diaries to forecast future seizures. While diary-based seizure forecasting alone is only one of many aspects of clinical care of patients with epilepsy, studying the level of predictability across seizures and patients paves the path towards a better understanding of predictable vs unpredictable seizures on individualized and population-wise bases.


Asunto(s)
Epilepsia , Calidad de Vida , Humanos , Teorema de Bayes , Convulsiones/diagnóstico , Aprendizaje Automático , Electroencefalografía
13.
IEEE J Sel Top Signal Process ; 16(2): 289-299, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36212235

RESUMEN

As we transition away from pandemic-induced isolation and social distancing, there is a need to estimate the risk of exposure in built environments. We propose a novel metric to quantify social distancing and the potential risk of exposure to airborne diseases in an indoor setting, which scales with distance and the number of people present. The risk of exposure metric is designed to incorporate the dynamics of particle movement in an enclosed set of rooms for people at different immunity levels, susceptibility due to age, background infection rates, intrinsic individual risk factors (e.g., comorbidities), mask-wearing levels, the half-life of the virus and ventilation rate in the environment. The model parameters have been selected for COVID-19, although the modeling framework applies to other airborne diseases. The performance of the metric is tested using simulations of a real physical environment, combining models for walking, path length dynamics, and air-conditioning replacement action. We have also created a visualization tool to help identify high-risk areas in the built environment. The resulting software framework is being used to help with planning movement and scheduling in a clinical environment ahead of reopening of the facility, for deciding the maximum time within an environment that is safe for a given number of people, for air replacement settings on air-conditioning and heating systems, and for mask-wearing policies. The framework can also be used for identifying locations where foot traffic might create high-risk zones and for planning timetabled transitions of groups of people between activities in different spaces. Moreover, when coupled with individual-level location tracking (via radio-frequency tagging, for example), the exposure risk metric can be used in real-time to estimate the risk of exposure to the coronavirus or other airborne illnesses, and intervene through air-conditioning action modification, changes in timetabling of group activities, mask-wearing policies, or restricting the number of individuals entering a given room/space. All software are provided online under an open-source license.

14.
J Electrocardiol ; 74: 5-9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35878534

RESUMEN

Despite the recent explosion of machine learning applied to medical data, very few studies have examined algorithmic bias in any meaningful manner, comparing across algorithms, databases, and assessment metrics. In this study, we compared the biases in sex, age, and race of 56 algorithms on over 130,000 electrocardiograms (ECGs) using several metrics and propose a machine learning model design to reduce bias. Participants of the 2021 PhysioNet Challenge designed and implemented working, open-source algorithms to identify clinical diagnosis from 2- lead ECG recordings. We grouped the data from the training, validation, and test datasets by sex (male vs female), age (binned by decade), and race (Asian, Black, White, and Other) whenever possible. We computed recording-wise accuracy, area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), F-measure, and the Challenge Score for each of the 56 algorithms. The Mann-Whitney U and the Kruskal-Wallis tests assessed the performance differences of algorithms across these demographic groups. Group trends revealed similar values for the AUROC, AUPRC, and F-measure for both male and female groups across the training, validation, and test sets. However, recording-wise accuracies were 20% higher (p < 0.01) and the Challenge Score 12% lower (p = 0.02) for female subjects on the test set. AUPRC, F-measure, and the Challenge Score increased with age, while recording-wise accuracy and AUROC decreased with age. The results were similar for the training and test sets, but only recording-wise accuracy (12% decrease per decade, p < 0.01), Challenge Score (1% increase per decade, p < 0.01), and AUROC (1% decrease per decade, p < 0.01) were statistically different on the test set. We observed similar AUROC, AUPRC, Challenge Score, and F-measure values across the different race categories. But, recording-wise accuracies were significantly lower for Black subjects and higher for Asian subjects on the training (31% difference, p < 0.01) and test (39% difference, p < 0.01) sets. A top performing model was then retrained using an additional constraint which simultaneously minimized differences in performance across sex, race and age. This resulted in a modest reduction in performance, with a significant reduction in bias. This work provides a demonstration that biases manifest as a function of model architecture, population, cost function and optimization metric, all of which should be closely examined in any model.


Asunto(s)
Arritmias Cardíacas , Electrocardiografía , Femenino , Humanos , Masculino , Factores Sexuales , Factores de Edad
15.
IEEE J Biomed Health Inform ; 26(6): 2524-2535, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932490

RESUMEN

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.


Asunto(s)
Soplos Cardíacos , Ruidos Cardíacos , Algoritmos , Auscultación , Niño , Auscultación Cardíaca/métodos , Soplos Cardíacos/diagnóstico , Humanos
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 910-914, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891438

RESUMEN

Common Spatial Pattern (CSP) is a popular feature extraction algorithm used for electroencephalogram (EEG) data classification in brain-computer interfaces. One of the critical operations used in CSP is taking the average of trial covariance matrices for each class. In this regard, the arithmetic mean, which minimizes the sum of squared Euclidean distances to the data points, is conventionally used; however, this operation ignores the Riemannian geometry in the manifold of covariance matrices. To alleviate this problem, Fréchet mean determined using different Riemannian distances have been used. In this paper, we are primarily concerned with the following question: Does using the Fréchet mean with Riemannian distances instead of arithmetic mean in averaging CSP covariance matrices improve the subject-independent classification of motor imagery (MI)? To answer this question we conduct a comparative study using the largest MI dataset to date, with 54 subjects and a total of 21,600 trials of left-and right-hand MI. The results indicate a general trend of having a statistically significant better performance when the Riemannian geometry is used.


Asunto(s)
Interfaces Cerebro-Computador , Algoritmos , Electroencefalografía , Mano , Humanos , Imágenes en Psicoterapia
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 319-324, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891300

RESUMEN

Deep learning methods, and in particular Convolutional Neural Networks (CNNs), have shown breakthrough performance in a wide variety of classification applications, including electroencephalogram-based Brain Computer Interfaces (BCIs). Despite the advances in the field, BCIs are still far from the subject-independent decoding of brain activities, primarily due to substantial inter-subject variability. In this study, we examine the potential application of an ensemble CNN classifier to integrate the capabilities of CNN architectures and ensemble learning for decoding EEG signals collected in motor imagery experiments. The results prove the superiority of the proposed ensemble CNN in comparison with the average base CNN classifiers, with an improvement up to 9% in classification accuracy depending on the test subject. The results also show improvement with respect to the performance of a number of state-of-the-art methods that have been previously used for subject-independent classification in the same datasets used here (i.e., BCI Competition IV 2A and 2B datasets).


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Algoritmos , Electroencefalografía , Redes Neurales de la Computación
18.
PLoS One ; 16(11): e0259916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34784378

RESUMEN

BACKGROUND: Atrial fibrillation (AFib) is the most common cardiac arrhythmia associated with stroke, blood clots, heart failure, coronary artery disease, and/or death. Multiple methods have been proposed for AFib detection, with varying performances, but no single approach appears to be optimal. We hypothesized that each state-of-the-art algorithm is appropriate for different subsets of patients and provides some independent information. Therefore, a set of suitably chosen algorithms, combined in a weighted voting framework, will provide a superior performance to any single algorithm. METHODS: We investigate and modify 38 state-of-the-art AFib classification algorithms for a single-lead ambulatory electrocardiogram (ECG) monitoring device. All algorithms are ranked using a random forest classifier and an expert-labeled training dataset of 2,532 recordings. The seven top-ranked algorithms are combined by using an optimized weighting approach. RESULTS: The proposed fusion algorithm, when validated on a separate test dataset consisting of 4,644 recordings, resulted in an area under the receiver operating characteristic (ROC) curve of 0.99. The sensitivity, specificity, positive-predictive-value (PPV), negative-predictive-value (NPV), and F1-score of the proposed algorithm were 0.93, 0.97, 0.87, 0.99, and 0.90, respectively, which were all superior to any single algorithm or any previously published. CONCLUSION: This study demonstrates how a set of well-chosen independent algorithms and a voting mechanism to fuse the outputs of the algorithms, outperforms any single state-of-the-art algorithm for AFib detection. The proposed framework is a case study for the general notion of crowdsourcing between open-source algorithms in healthcare applications. The extension of this framework to similar applications may significantly save time, effort, and resources, by combining readily existing algorithms. It is also a step toward the democratization of artificial intelligence and its application in healthcare.


Asunto(s)
Fibrilación Atrial/diagnóstico , Colaboración de las Masas/métodos , Electrocardiografía Ambulatoria/instrumentación , Algoritmos , Bases de Datos Factuales , Humanos , Monitoreo Ambulatorio/instrumentación , Curva ROC , Sensibilidad y Especificidad , Programas Informáticos
19.
Sci Data ; 8(1): 30, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500414

RESUMEN

Non-invasive foetal electrocardiography (fECG) continues to be an open topic for research. The development of standard algorithms for the extraction of the fECG from the maternal electrophysiological interference is limited by the lack of publicly available reference datasets that could be used to benchmark different algorithms while providing a ground truth for foetal heart activity when an invasive scalp lead is unavailable. In this work, we present the Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research (NInFEA), the first open-access multimodal early-pregnancy dataset in the field that features simultaneous non-invasive electrophysiological recordings and foetal pulsed-wave Doppler (PWD). The dataset is mainly conceived for researchers working on fECG signal processing algorithms. The dataset includes 60 entries from 39 pregnant women, between the 21st and 27th week of gestation. Each dataset entry comprises 27 electrophysiological channels (2048 Hz, 22 bits), a maternal respiration signal, synchronised foetal trans-abdominal PWD and clinical annotations provided by expert clinicians during signal acquisition. MATLAB snippets for data processing are also provided.


Asunto(s)
Ecocardiografía Doppler , Electrocardiografía , Feto/fisiología , Pruebas Prenatales no Invasivas , Cardiología , Femenino , Corazón/fisiología , Humanos , Embarazo
20.
IEEE Trans Biomed Eng ; 67(5): 1377-1386, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31442967

RESUMEN

OBJECTIVE: Mixtures of temporally nonstationary signals are very common in biomedical applications. The nonstationarity of the source signals can be used as a discriminative property for signal separation. Herein, a semi-blind source separation algorithm is proposed for the extraction of temporally nonstationary components from linear multichannel mixtures of signals and noises. METHODS: A hypothesis test is proposed for the detection and fusion of temporally nonstationary events, by using ad hoc indexes for monitoring the first and second order statistics of the innovation process. As proof of concept, the general framework is customized and tested over noninvasive fetal cardiac recordings acquired from the maternal abdomen, over publicly available datasets, using two types of nonstationarity detectors: 1) a local power variations detector, and 2) a model-deviations detector using the innovation process properties of an extended Kalman filter. RESULTS: The performance of the proposed method is assessed in presence of white and colored noise, in different signal-to-noise ratios. CONCLUSION AND SIGNIFICANCE: The proposed scheme is general and it can be used for the extraction of nonstationary events and sample deviations from a presumed model in multivariate data, which is a recurrent problem in many machine learning applications.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Algoritmos , Femenino , Monitoreo Fetal , Feto , Humanos , Embarazo , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...