Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38676279

RESUMEN

This study uses a wind turbine case study as a subdomain of Industrial Internet of Things (IIoT) to showcase an architecture for implementing a distributed digital twin in which all important aspects of a predictive maintenance solution in a DT use a fog computing paradigm, and the typical predictive maintenance DT is improved to offer better asset utilization and management through real-time condition monitoring, predictive analytics, and health management of selected components of wind turbines in a wind farm. Digital twin (DT) is a technology that sits at the intersection of Internet of Things, Cloud Computing, and Software Engineering to provide a suitable tool for replicating physical objects in the digital space. This can facilitate the implementation of asset management in manufacturing systems through predictive maintenance solutions leveraged by machine learning (ML). With DTs, a solution architecture can easily use data and software to implement asset management solutions such as condition monitoring and predictive maintenance using acquired sensor data from physical objects and computing capabilities in the digital space. While DT offers a good solution, it is an emerging technology that could be improved with better standards, architectural framework, and implementation methodologies. Researchers in both academia and industry have showcased DT implementations with different levels of success. However, DTs remain limited in standards and architectures that offer efficient predictive maintenance solutions with real-time sensor data and intelligent DT capabilities. An appropriate feedback mechanism is also needed to improve asset management operations.

2.
Sensors (Basel) ; 20(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326272

RESUMEN

The automobile industry no longer relies on pure mechanical systems; instead, it benefits from many smart features based on advanced embedded electronics. Although the rise in electronics and connectivity has improved comfort, functionality, and safe driving, it has also created new attack surfaces to penetrate the in-vehicle communication network, which was initially designed as a close loop system. For such applications, the Controller Area Network (CAN) is the most-widely used communication protocol, which still suffers from various security issues because of the lack of encryption and authentication. As a result, any malicious/hijacked node can cause catastrophic accidents and financial loss. This paper analyses the CAN bus comprehensively to provide an outlook on security concerns. It also presents the security vulnerabilities of the CAN and a state-of-the-art attack surface with cases of implemented attack scenarios and goes through different solutions that assist in attack prevention, mainly based on an intrusion detection system (IDS).

3.
Nat Immunol ; 19(3): 246-254, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29358708

RESUMEN

Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-ß and IL-1ß. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-ß and IL-1ß. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Autofagia/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Enfermedad de Crohn/inmunología , Femenino , Humanos , Macrófagos/inmunología , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/inmunología
4.
Dev Cell ; 41(3): 262-273.e6, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28486130

RESUMEN

Gastric acid secretion by parietal cells requires trafficking and exocytosis of H/K-ATPase-rich tubulovesicles (TVs) toward apical membranes in response to histamine stimulation via cyclic AMP elevation. Here, we found that TRPML1 (ML1), a protein that is mutated in type IV mucolipidosis (ML-IV), is a tubulovesicular channel essential for TV exocytosis and acid secretion. Whereas ML-IV patients are reportedly achlorhydric, transgenic overexpression of ML1 in mouse parietal cells induced constitutive acid secretion. Gastric acid secretion was blocked and stimulated by ML1 inhibitors and agonists, respectively. Organelle-targeted Ca2+ imaging and direct patch-clamping of apical vacuolar membranes revealed that ML1 mediates a PKA-activated conductance on TV membranes that is required for histamine-induced Ca2+ release from TV stores. Hence, we demonstrated that ML1, acting as a Ca2+ channel in TVs, links transmitter-initiated cyclic nucleotide signaling with Ca2+-dependent TV exocytosis in parietal cells, providing a regulatory mechanism that could be targeted to manage acid-related gastric diseases.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Exocitosis/fisiología , Ácido Gástrico/metabolismo , Células Parietales Gástricas/metabolismo , Animales , Transporte Biológico/fisiología , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Histamina/metabolismo , Ratones , Transducción de Señal/fisiología
5.
Nat Immunol ; 16(7): 729-36, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030023

RESUMEN

Dendritic cells (DCs) can initiate immune responses by presenting exogenous antigens to T cells via both major histocompatibility complex (MHC) class I pathways and MHC class II pathways. Lysosomal activity has an important role in modulating the balance between these two pathways. The transcription factor TFEB regulates lysosomal function by inducing lysosomal activation. Here we report that TFEB expression inhibited the presentation of exogenous antigen by MHC class I while enhancing presentation via MHC class II. TFEB promoted phagosomal acidification and protein degradation. Furthermore, we found that the activation of TFEB was regulated during DC maturation and that phagosomal acidification was impaired in DCs in which the gene encoding TFEB was silenced. Our data indicate that TFEB is a key participant in the differential regulation of the presentation of exogenous antigens by DCs.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos/inmunología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/inmunología , Transducción de Señal/inmunología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Cultivadas , Chlorocebus aethiops , Reactividad Cruzada/inmunología , Citometría de Flujo , Células HEK293 , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Microscopía Confocal , Fagosomas/inmunología , Fagosomas/metabolismo , Proteolisis , Interferencia de ARN/inmunología , Bazo/citología , Bazo/inmunología , Bazo/metabolismo , Células Vero
6.
Nat Med ; 20(10): 1187-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25216637

RESUMEN

The integrity of the plasma membrane is maintained through an active repair process, especially in skeletal and cardiac muscle cells, in which contraction-induced mechanical damage frequently occurs in vivo. Muscular dystrophies (MDs) are a group of muscle diseases characterized by skeletal muscle wasting and weakness. An important cause of these group of diseases is defective repair of sarcolemmal injuries, which normally requires Ca(2+) sensor proteins and Ca(2+)-dependent delivery of intracellular vesicles to the sites of injury. MCOLN1 (also known as TRPML1, ML1) is an endosomal and lysosomal Ca(2+) channel whose human mutations cause mucolipidosis IV (ML4), a neurodegenerative disease with motor disabilities. Here we report that ML1-null mice develop a primary, early-onset MD independent of neural degeneration. Although the dystrophin-glycoprotein complex and the known membrane repair proteins are expressed normally, membrane resealing was defective in ML1-null muscle fibers and also upon acute and pharmacological inhibition of ML1 channel activity or vesicular Ca(2+) release. Injury facilitated the trafficking and exocytosis of vesicles by upmodulating ML1 channel activity. In the dystrophic mdx mouse model, overexpression of ML1 decreased muscle pathology. Collectively, our data have identified an intracellular Ca(2+) channel that regulates membrane repair in skeletal muscle via Ca(2+)-dependent vesicle exocytosis.


Asunto(s)
Distrofia Muscular Animal/metabolismo , Sarcolema/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Canales de Calcio/deficiencia , Canales de Calcio/genética , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Exocitosis , Femenino , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos mdx , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Sarcolema/patología , Canales de Potencial de Receptor Transitorio/deficiencia , Canales de Potencial de Receptor Transitorio/genética
7.
J Lipid Res ; 55(6): 995-1009, 2014 06.
Artículo en Inglés | MEDLINE | ID: mdl-24668941

RESUMEN

Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs.


Asunto(s)
Exocitosis/genética , Errores Innatos del Metabolismo Lipídico , Metabolismo de los Lípidos/genética , Lisosomas , Animales , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/patología , Errores Innatos del Metabolismo Lipídico/terapia , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología
8.
Dev Cell ; 26(5): 511-24, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23993788

RESUMEN

Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.


Asunto(s)
Lisosomas/genética , Fagocitosis/genética , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Envejecimiento/genética , Animales , Calcio/metabolismo , Exocitosis/genética , Regulación de la Expresión Génica , Ratones , Tamaño de la Partícula , Fosfatos de Fosfatidilinositol/metabolismo , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores
9.
Cell ; 151(2): 372-83, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063126

RESUMEN

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Asunto(s)
Canales de Calcio/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Línea Celular , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , NADP/análogos & derivados , NADP/metabolismo , Canales de Sodio/metabolismo
10.
Cell ; 141(2): 331-43, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403327

RESUMEN

A plethora of growth factors regulate keratinocyte proliferation and differentiation that control hair morphogenesis and skin barrier formation. Wavy hair phenotypes in mice result from naturally occurring loss-of-function mutations in the genes for TGF-alpha and EGFR. Conversely, excessive activities of TGF-alpha/EGFR result in hairless phenotypes and skin cancers. Unexpectedly, we found that mice lacking the Trpv3 gene also exhibit wavy hair coat and curly whiskers. Here we show that keratinocyte TRPV3, a member of the transient receptor potential (TRP) family of Ca(2+)-permeant channels, forms a signaling complex with TGF-alpha/EGFR. Activation of EGFR leads to increased TRPV3 channel activity, which in turn stimulates TGF-alpha release. TRPV3 is also required for the formation of the skin barrier by regulating the activities of transglutaminases, a family of Ca(2+)-dependent crosslinking enzymes essential for keratinocyte cornification. Our results show that a TRP channel plays a role in regulating growth factor signaling by direct complex formation.


Asunto(s)
Receptores ErbB/metabolismo , Cabello/crecimiento & desarrollo , Transducción de Señal , Piel/crecimiento & desarrollo , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Cabello/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Noqueados , Piel/metabolismo , Canales Catiónicos TRPV/genética , Factor de Crecimiento Transformador alfa/metabolismo
11.
FEBS Lett ; 584(10): 2013-21, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20074572

RESUMEN

The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.


Asunto(s)
Espacio Intracelular/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Homeostasis , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Transporte de Proteínas , Transducción de Señal
12.
Pflugers Arch ; 459(1): 79-91, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19763610

RESUMEN

Mucolipidosis type IV is a lysosomal storage disorder caused by the loss or dysfunction of the mucolipin-1 (TRPML1) protein. It has been suggested that TRPML2 could genetically compensate (i.e., become upregulated) for the loss of TRPML1. We thus investigated this possibility by first studying the expression pattern of mouse TRPML2 and its basic channel properties using the varitint-waddler (Va) model. Here, we confirmed the presence of long variant TRPML2 (TRPML2lv) and short variant (TRPML2sv) isoforms. We showed for the first time that, heterologously expressed, TRPML2lv-Va is an active, inwardly rectifying channel. Secondly, we quantitatively measured TRPML2 and TRPML3 mRNA expressions in TRPML1-/- null and wild-type (Wt) mice. In wild-type mice, the TRPML2lv transcripts were very low while TRPML2sv and TRPML3 transcripts have predominant expressions in lymphoid and kidney organs. Significant reductions of TRPML2sv, but not TRPML2lv or TRPML3 transcripts, were observed in lymphoid and kidney organs of TRPML1-/- mice. RNA interference of endogenous human TRPML1 in HEK-293 cells produced a comparable decrease of human TRPML2 transcript levels that can be restored by overexpression of human TRPML1. Conversely, significant upregulation of TRPML2sv transcripts was observed when primary mouse lymphoid cells were treated with nicotinic acid adenine dinucleotide phosphate, or N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline sulfonamide, both known activators of TRPML1. In conclusion, our results indicate that TRPML2 is unlikely to compensate for the loss of TRPML1 in lymphoid or kidney organs and that TRPML1 appears to play a novel role in the tissue-specific transcriptional regulation of TRPML2.


Asunto(s)
Regulación de la Expresión Génica , Mucolipidosis/genética , Canales Catiónicos TRPM/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Mucolipidosis/metabolismo , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales Catiónicos TRPM/metabolismo , Transcripción Genética , Transfección , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
13.
Pflugers Arch ; 457(2): 463-73, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18504603

RESUMEN

The transient receptor potential mucolipins (TRPMLs) are the most recently discovered subfamily of TRP ion channel proteins. Positional cloning approach has identified two mutations in the TRPML3 (Mcoln3) gene that cause the varitint-waddler mouse phenotypes. Short for variable tint (diluted coat color), the varitint-waddler consists two phenotypes Va and Va ( J ). The mutation associated with the Va phenotype is an alanine to proline substitution at position 419 (A419P) within the predicted fifth transmembrane (TM5) domain of TRPML3. The second Va ( J ) mouse phenotype arose spontaneously from an isoleucine to threonine substitution at position 362 (I362T) that is proximal to the predicted TM3 domain in addition to the existing A419P mutation on TM5. Mice with the Va and Va ( J ) mutations exhibit a spectrum of disease phenotypes from diluted coat color to auditory and vestibular problems, depending on which alleles are present. It has been over 5 years since the discovery of these TRPML3 mutations, and it was just recently that the nature of these mutations has been characterized. In this review, we discuss the molecular and cell physiological effects of the two distinct TRPML3 mutations. We reveal the effects of proline substitution on transmembrane domain structure and channel function and discuss how the Va mutation confers its cytotoxicity, while the Va ( J ) mutation results in an apparent rescue phenotype. Finally, we briefly tackle molecular strategies that have been employed to neutralize the cytotoxic effect and constitutive channel activity of the Va mutation.


Asunto(s)
Calcio/metabolismo , Mutación , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Alanina , Animales , Predisposición Genética a la Enfermedad , Genotipo , Color del Cabello/genética , Audición/genética , Trastornos de la Audición/genética , Trastornos de la Audición/metabolismo , Isoleucina , Potenciales de la Membrana , Ratones , Ratones Mutantes , Modelos Moleculares , Fenotipo , Prolina , Conformación Proteica , Estructura Terciaria de Proteína , Pigmentación de la Piel/genética , Canales Catiónicos TRPM/química , Treonina , Canales de Potencial de Receptor Transitorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...