Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
IEEE Trans Med Imaging ; PP2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607705

RESUMEN

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38657156

RESUMEN

ABSTRACT: Neuroendocrine neoplasms are a heterogeneous group of gastrointestinal and lung tumors. Their diverse clinical manifestations, variable locations, and heterogeneity present notable diagnostic challenges. This article delves into the imaging modalities vital for their detection and characterization. Computed tomography is essential for initial assessment and staging. At the same time, magnetic resonance imaging (MRI) is particularly adept for liver, pancreatic, osseous, and rectal imaging, offering superior soft tissue contrast. The article also highlights the limitations of these imaging techniques, such as MRI's inability to effectively evaluate the cortical bone and the questioned cost-effectiveness of computed tomography and MRI for detecting specific gastric lesions. By emphasizing the strengths and weaknesses of these imaging techniques, the review offers insights into optimizing their utilization for improved diagnosis, staging, and therapeutic management of neuroendocrine neoplasms.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38626751

RESUMEN

ABSTRACT: Neuroendocrine neoplasms (NENs) are a diverse group of tumors that express neuroendocrine markers and primarily affect the lungs and digestive system. The incidence of NENs has increased over time due to advancements in imaging and diagnostic techniques. Effective management of NENs requires a multidisciplinary approach, considering factors such as tumor location, grade, stage, symptoms, and imaging findings. Treatment strategies vary depending on the specific subtype of NEN. In this review, we will focus on treatment strategies and therapies including the information relevant to clinicians in order to undertake optimal management and treatment decisions, the implications of different therapies on imaging, and how to ascertain their possible complications and treatment effects.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38082806

RESUMEN

Commercial ultrasound vascular phantoms lack the anatomic diversity required for robust pre-clinical interventional device testing. We fabricated individualized phantoms to test an artificial intelligence enabled ultrasound-guided surgical robotic system (AI-GUIDE) which allows novices to cannulate deep vessels. After segmenting vessels on computed tomography scans, vessel cores, bony anatomy, and a mold tailored to the skin contour were 3D-printed. Vessel cores were coated in silicone, surrounded in tissue-mimicking gel tailored for ultrasound and needle insertion, and dissolved with water. One upper arm and four inguinal phantoms were constructed. Operators used AI-GUIDE to deploy needles into phantom vessels. Two groin phantoms were tested due to imaging artifacts in the other two phantoms. Six operators (medical experience: none, 3; 1-5 years, 2; 5+ years, 1) inserted 27 inguinal needles with 81% (22/27) success in a median of 48 seconds. Seven operators performed 24 arm injections, without tuning the AI for arm anatomy, with 71% (17/24) success. After excluding failures due to motor malfunction and a defective needle, success rate was 100% (22/22) in the groin and 85% (17/20) in the arm. Individualized 3D-printed phantoms permit testing of surgical robotics across a large number of operators and different anatomic sites. AI-GUIDE operators rapidly and reliably inserted a needle into target vessels in the upper arm and groin, even without prior medical training. Virtual device trials in individualized 3-D printed phantoms may improve rigor of results and expedite translation.Clinical Relevance- Individualized phantoms enable rigorous and efficient evaluation of interventional devices and reduce the need for animal and human subject testing.


Asunto(s)
Inteligencia Artificial , Agujas , Animales , Humanos , Ultrasonografía , Fantasmas de Imagen , Ultrasonografía Intervencional/métodos
5.
Radiology ; 309(2): e223146, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37934095

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a common cause of morbidity and mortality. Nonfocal liver biopsy is the historical reference standard for evaluating NAFLD, but it is limited by invasiveness, high cost, and sampling error. Imaging methods are ideally situated to provide quantifiable results and rule out other anatomic diseases of the liver. MRI and US have shown great promise for the noninvasive evaluation of NAFLD. US is particularly well suited to address the population-level problem of NAFLD because it is lower-cost, more available, and more tolerable to a broader range of patients than MRI. Noninvasive US methods to evaluate liver fibrosis are widely available, and US-based tools to evaluate steatosis and inflammation are gaining traction. US techniques including shear-wave elastography, Doppler spectral imaging, attenuation coefficient, hepatorenal index, speed of sound, and backscatter-based estimation have regulatory clearance and are in clinical use. New methods based on channel and radiofrequency data analysis approaches have shown promise but are mostly experimental. This review discusses the advantages and limitations of clinically available and experimental approaches to sonographic liver tissue characterization for NAFLD diagnosis as well as future applications and strategies to overcome current limitations.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Biopsia , Inflamación
6.
Sci Adv ; 9(44): eadi6129, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910613

RESUMEN

Acoustic beam shaping with high degrees of freedom is critical for applications such as ultrasound imaging, acoustic manipulation, and stimulation. However, the ability to fully control the acoustic pressure profile over its propagation path has not yet been achieved. Here, we demonstrate an acoustic diffraction-resistant adaptive profile technology (ADAPT) that can generate a propagation-invariant beam with an arbitrarily desired profile. By leveraging wave number modulation and beam multiplexing, we develop a general framework for creating a highly flexible acoustic beam with a linear array ultrasonic transducer. The designed acoustic beam can also maintain the beam profile in lossy material by compensating for attenuation. We show that shear wave elasticity imaging is an important modality that can benefit from ADAPT for evaluating tissue mechanical properties. Together, ADAPT overcomes the existing limitation of acoustic beam shaping and can be applied to various fields, such as medicine, biology, and material science.


Asunto(s)
Acústica , Transductores , Ultrasonografía/métodos , Elasticidad , Ciencia de los Materiales
7.
Radiology ; 309(1): e231092, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37815451

RESUMEN

Background There is a need for reliable noninvasive methods for diagnosing and monitoring nonalcoholic fatty liver disease (NAFLD). Thus, the multidisciplinary Non-invasive Biomarkers of Metabolic Liver disease (NIMBLE) consortium was formed to identify and advance the regulatory qualification of NAFLD imaging biomarkers. Purpose To determine the different-day same-scanner repeatability coefficient of liver MRI biomarkers in patients with NAFLD at risk for steatohepatitis. Materials and Methods NIMBLE 1.2 is a prospective, observational, single-center short-term cross-sectional study (October 2021 to June 2022) in adults with NAFLD across a spectrum of low, intermediate, and high likelihood of advanced fibrosis as determined according to the fibrosis based on four factors (FIB-4) index. Participants underwent up to seven MRI examinations across two visits less than or equal to 7 days apart. Standardized imaging protocols were implemented with six MRI scanners from three vendors at both 1.5 T and 3 T, with central analysis of the data performed by an independent reading center (University of California, San Diego). Trained analysts, who were blinded to clinical data, measured the MRI proton density fat fraction (PDFF), liver stiffness at MR elastography (MRE), and visceral adipose tissue (VAT) for each participant. Point estimates and CIs were calculated using χ2 distribution and statistical modeling for pooled repeatability measures. Results A total of 17 participants (mean age, 58 years ± 8.5 [SD]; 10 female) were included, of which seven (41.2%), six (35.3%), and four (23.5%) participants had a low, intermediate, or high likelihood of advanced fibrosis, respectively. The different-day same-scanner mean measurements were 13%-14% for PDFF, 6.6 L for VAT, and 3.15 kPa for two-dimensional MRE stiffness. The different-day same-scanner repeatability coefficients were 0.22 L (95% CI: 0.17, 0.29) for VAT, 0.75 kPa (95% CI: 0.6, 0.99) for MRE stiffness, 1.19% (95% CI: 0.96, 1.61) for MRI PDFF using magnitude reconstruction, 1.56% (95% CI: 1.26, 2.07) for MRI PDFF using complex reconstruction, and 19.7% (95% CI: 15.8, 26.2) for three-dimensional MRE shear modulus. Conclusion This preliminary study suggests that thresholds of 1.2%-1.6%, 0.22 L, and 0.75 kPa for MRI PDFF, VAT, and MRE, respectively, should be used to discern measurement error from real change in patients with NAFLD. ClinicalTrials.gov registration no. NCT05081427 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kozaka and Matsui in this issue.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Adulto , Femenino , Humanos , Persona de Mediana Edad , Biomarcadores , Estudios Transversales , Diagnóstico por Imagen de Elasticidad/métodos , Fibrosis , Hígado/diagnóstico por imagen , Hígado/patología , Imagen por Resonancia Magnética/métodos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios Prospectivos
8.
Sci Rep ; 13(1): 16450, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777523

RESUMEN

Post-operative urinary retention is a medical condition where patients cannot urinate despite having a full bladder. Ultrasound imaging of the bladder is used to estimate urine volume for early diagnosis and management of urine retention. Moreover, the use of bladder ultrasound can reduce the need for an indwelling urinary catheter and the risk of catheter-associated urinary tract infection. Wearable ultrasound devices combined with machine-learning based bladder volume estimation algorithms reduce the burdens of nurses in hospital settings and improve outpatient care. However, existing algorithms are memory and computation intensive, thereby demanding the use of expensive GPUs. In this paper, we develop and validate a low-compute memory-efficient deep learning model for accurate bladder region segmentation and urine volume calculation. B-mode ultrasound bladder images of 360 patients were divided into training and validation sets; another 74 patients were used as the test dataset. Our 1-bit quantized models with 4-bits and 6-bits skip connections achieved an accuracy within [Formula: see text] and [Formula: see text], respectively, of a full precision state-of-the-art neural network (NN) without any floating-point operations and with an [Formula: see text] and [Formula: see text] reduction in memory requirements to fit under 150 kB. The means and standard deviations of the volume estimation errors, relative to estimates from ground-truth clinician annotations, were [Formula: see text] ml and [Formula: see text] ml, respectively. This lightweight NN can be easily integrated on the wearable ultrasound device for automated and continuous monitoring of urine volume. Our approach can potentially be extended to other clinical applications, such as monitoring blood pressure and fetal heart rate.


Asunto(s)
Vejiga Urinaria , Retención Urinaria , Humanos , Vejiga Urinaria/diagnóstico por imagen , Algoritmos , Redes Neurales de la Computación , Ultrasonografía/métodos , Retención Urinaria/diagnóstico por imagen
9.
Nat Med ; 29(10): 2656-2664, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37679433

RESUMEN

There are no approved diagnostic biomarkers for at-risk non-alcoholic steatohepatitis (NASH), defined by the presence of NASH, high histological activity and fibrosis stage ≥2, which is associated with higher incidence of liver-related events and mortality. FNIH-NIMBLE is a multi-stakeholder project to support regulatory approval of NASH-related biomarkers. The diagnostic performance of five blood-based panels was evaluated in an observational (NASH CRN DB2) cohort (n = 1,073) with full spectrum of non-alcoholic fatty liver disease (NAFLD). The panels were intended to diagnose at-risk NASH (NIS4), presence of NASH (OWLiver) or fibrosis stages >2, >3 or 4 (enhanced liver fibrosis (ELF) test, PROC3 and FibroMeter VCTE). The prespecified performance metric was an area under the receiver operating characteristic curve (AUROC) ≥0.7 and superiority over alanine aminotransferase for disease activity and the FIB-4 test for fibrosis severity. Multiple biomarkers met these metrics. NIS4 had an AUROC of 0.81 (95% confidence interval: 0.78-0.84) for at-risk NASH. The AUROCs of the ELF test, PROC3 and FibroMeterVCTE for clinically significant fibrosis (≥stage 2), advanced fibrosis (≥stage 3) or cirrhosis (stage 4), respectively, were all ≥0.8. ELF and FibroMeter VCTE outperformed FIB-4 for all fibrosis endpoints. These data represent a milestone toward qualification of several biomarker panels for at-risk NASH and also fibrosis severity in individuals with NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Fibrosis , Biomarcadores , Biopsia/efectos adversos
10.
PLoS One ; 18(3): e0281050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920944

RESUMEN

Effective masking policies to prevent the spread of airborne infections depend on public access to masks with high filtration efficacy. However, poor face-fit is almost universally present in pleated multilayer disposable face masks, severely limiting both individual and community respiratory protection. We developed a set of simple mask modifications to mass-manufactured disposable masks, the most common type of mask used by the public, that dramatically improves both their personalized fit and performance in a low-cost and scalable manner. These modifications comprise a user-moldable full mask periphery wire, integrated earloop tension adjusters, and an inner flange to trap respiratory droplets. We demonstrate that these simple design changes improve quantitative fit factor by 320%, triples the level of protection against aerosolized droplets, and approaches the model efficacy of N95 respirators in preventing the community spread of COVID-19, for an estimated additional cost of less than 5 cents per mask with automated production.


Asunto(s)
COVID-19 , Dispositivos de Protección Respiratoria , Humanos , COVID-19/prevención & control , Máscaras , Respiradores N95 , Filtración
11.
Res Sq ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711803

RESUMEN

Background There are no approved noninvasive tests (NIT) for the diagnosis of nonalcoholic steatohepatitis (NASH) and its histological phenotypes. Methods The FNIH-NIMBLE consortium tested 5 serum-based NIT panels for the following intended uses: NIS4: At-risk NASH, a composite of NASH with NAFLD activity score (NAS) ≥ 4 and fibrosis stage ≥ 2, OWLiver: NASH and NAS ≥ 4, enhanced liver fibrosis (ELF), PROC3 and Fibrometer VCTE: fibrosis stages ≥ 2, ≥ 3 or 4. Aliquots from a single blood sample obtained within 90 days of histological confirmation of NAFLD were tested. The prespecified performance metric tested for was a diagnostic AUROC greater than 0.7 and superiority to ALT for diagnosis of NASH or NAS ≥ 4 and to FIB-4 for fibrosis. Results A total of 1073 adults including NASH (n = 848), at-risk NASH (n = 539) and fibrosis stages 0-4 (n = 222, 114, 262, 277 and 198 respectively) were studied. The AUROC of NIS4 for at-risk NASH was 0.81 and superior to ALT and FIB4 (p < 0.001 for both). OWliver diagnosed NASH with sensitivity and specificity of 77.3% and 66.8% respectively. The AUROCs (95% CI) of ELF, PROC3 and Fibrometer VCTE respectively for fibrosis were as follows: ≥ stage 2 fibrosis [0.82 (0.8-0.85), 0.8 (0.77-0.83), and 0.84 (0.79-0.88)], ≥ stage 3 [0.83 (0.8-0.86), 0.76 (0.73-0.79), 0.85 (0.81-0.9), stage 4 [0.85 (0.81-0.89), 0.81 (0.77-0.85), 0.89 (0.84-0.95)]. ELF and Fibrometer VCTE were significantly superior to FIB-4 for all fibrosis endpoints (p < 0.01 for all). Conclusions These data support the further development of NIS4, ELF and Fibrometer VCTE for their intended uses.

12.
Diagnostics (Basel) ; 12(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36553220

RESUMEN

Antral follicle Count (AFC) is a non-invasive biomarker used to assess ovarian reserves through transvaginal ultrasound (TVUS) imaging. Antral follicles' diameter is usually in the range of 2-10 mm. The primary aim of ovarian reserve monitoring is to measure the size of ovarian follicles and the number of antral follicles. Manual follicle measurement is inhibited by operator time, expertise and the subjectivity of delineating the two axes of the follicles. This necessitates an automated framework capable of quantifying follicle size and count in a clinical setting. This paper proposes a novel Harmonic Attention-based U-Net network, HaTU-Net, to precisely segment the ovary and follicles in ultrasound images. We replace the standard convolution operation with a harmonic block that convolves the features with a window-based discrete cosine transform (DCT). Additionally, we proposed a harmonic attention mechanism that helps to promote the extraction of rich features. The suggested technique allows for capturing the most relevant features, such as boundaries, shape, and textural patterns, in the presence of various noise sources (i.e., shadows, poor contrast between tissues, and speckle noise). We evaluated the proposed model on our in-house private dataset of 197 patients undergoing TransVaginal UltraSound (TVUS) exam. The experimental results on an independent test set confirm that HaTU-Net achieved a Dice coefficient score of 90% for ovaries and 81% for antral follicles, an improvement of 2% and 10%, respectively, when compared to a standard U-Net. Further, we accurately measure the follicle size, yielding the recall, and precision rates of 91.01% and 76.49%, respectively.

13.
Radiology ; 305(2): 265-276, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36098640

RESUMEN

Excessive liver fat (steatosis) is now the most common cause of chronic liver disease worldwide and is an independent risk factor for cirrhosis and associated complications. Accurate and clinically useful diagnosis, risk stratification, prognostication, and therapy monitoring require accurate and reliable biomarker measurement at acceptable cost. This article describes a joint effort by the American Institute of Ultrasound in Medicine (AIUM) and the RSNA Quantitative Imaging Biomarkers Alliance (QIBA) to develop standards for clinical and technical validation of quantitative biomarkers for liver steatosis. The AIUM Liver Fat Quantification Task Force provides clinical guidance, while the RSNA QIBA Pulse-Echo Quantitative Ultrasound Biomarker Committee develops methods to measure biomarkers and reduce biomarker variability. In this article, the authors present the clinical need for quantitative imaging biomarkers of liver steatosis, review the current state of various imaging modalities, and describe the technical state of the art for three key liver steatosis pulse-echo quantitative US biomarkers: attenuation coefficient, backscatter coefficient, and speed of sound. Lastly, a perspective on current challenges and recommendations for clinical translation for each biomarker is offered.


Asunto(s)
Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado Graso/diagnóstico por imagen , Hígado/diagnóstico por imagen , Ultrasonografía/métodos , Biomarcadores , Estándares de Referencia , Imagen por Resonancia Magnética
14.
Comput Biol Med ; 148: 105891, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35932729

RESUMEN

Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación
15.
Ultrasound Med Biol ; 48(8): 1547-1554, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35660106

RESUMEN

To develop an ultrasound-based machine learning classifier to diagnose benignity within indeterminate thyroid nodules (ITNs) by fine-needle aspiration, 180 patients with 194 ITNs (Bethesda classes III, IV and V) undergoing surgery over a 5-y study period were analyzed. The data set was randomly divided into training and testing data sets with 155 and 39 ITNs, respectively. All nodules were evaluated by ultrasound using the American College of Radiology Thyroid Imaging Reporting and Data System by manually scoring composition, echogenicity, shape, margin and echogenic foci. Nodule size, participant age and patient sex were recorded. A support vector machine (SVM) model with a cost-sensitive approach was developed using the aforementioned eight parameters with surgical histopathology as the reference standard. Surgical pathology determined 90 (46.4%) ITNs were malignant and 104 (53.6%) were benign. The SVM model classified 14 nodules as benign in the testing data set, of which 13 were correct (sensitivity = 93.8%, specificity = 56.5%). Considering malignancy prevalence by Bethesda group, the negative predictive values of this model for Bethesda III and IV categories were 93.9% and 93. 8%, respectively. The high negative predictive value of the SVM ultrasound-based model suggests a pathway by which surgical excision of Bethesda III and IV ITNs classified as benign may be avoided.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Biopsia con Aguja Fina , Humanos , Aprendizaje Automático , Estudios Retrospectivos , Neoplasias de la Tiroides/patología , Nódulo Tiroideo/patología
18.
Abdom Radiol (NY) ; 47(9): 3037-3050, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34687329

RESUMEN

Elastography has emerged as a preferred non-invasive imaging technique for the clinical assessment of liver fibrosis. Elastography methods provide liver stiffness measurement (LSM) as a surrogate quantitative biomarker for fibrosis burden in chronic liver disease (CLD). Elastography can be performed either with ultrasound or MRI. Currently available ultrasound-based methods include strain elastography, two-dimensional shear wave elastography (2D-SWE), point shear wave elastography (pSWE), and vibration-controlled transient elastography (VCTE). MR Elastography (MRE) is widely available as two-dimensional gradient echo MRE (2D-GRE-MRE) technique. US-based methods provide estimated Young's modulus (eYM) and MRE provides magnitude of the complex shear modulus. MRE and ultrasound methods have proven to be accurate methods for detection of advanced liver fibrosis and cirrhosis. Other clinical applications of elastography include liver decompensation prediction, and differentiation of non-alcoholic steatohepatitis (NASH) from simple steatosis (SS). In this review, we briefly describe the different elastography methods, discuss current clinical applications, and provide an overview of advances in the field of liver elastography.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Enfermedad del Hígado Graso no Alcohólico/patología
19.
Biosensors (Basel) ; 11(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34940279

RESUMEN

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions. However, central access is normally performed by highly experienced critical care physicians in a hospital setting. We developed a handheld AI-enabled interventional device, AI-GUIDE (Artificial Intelligence Guided Ultrasound Interventional Device), capable of directing users with no ultrasound or interventional expertise to catheterize a deep blood vessel, with an initial focus on the femoral vein. AI-GUIDE integrates with widely available commercial portable ultrasound systems and guides a user in ultrasound probe localization, venous puncture-point localization, and needle insertion. The system performs vascular puncture robotically and incorporates a preloaded guidewire to facilitate the Seldinger technique of catheter insertion. Results from tissue-mimicking phantom and porcine studies under normotensive and hypotensive conditions provide evidence of the technique's robustness, with key performance metrics in a live porcine model including: a mean time to acquire femoral vein insertion point of 53 ± 36 s (5 users with varying experience, in 20 trials), a total time to insert catheter of 80 ± 30 s (1 user, in 6 trials), and a mean number of 1.1 (normotensive, 39 trials) and 1.3 (hypotensive, 55 trials) needle insertion attempts (1 user). These performance metrics in a porcine model are consistent with those for experienced medical providers performing central vascular access on humans in a hospital.


Asunto(s)
Cateterismo Venoso Central , Procedimientos Quirúrgicos Robotizados , Ultrasonografía Intervencional , Animales , Inteligencia Artificial , Vena Femoral/diagnóstico por imagen , Humanos , Porcinos
20.
AJR Am J Roentgenol ; 216(5): 1205-1215, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33729888

RESUMEN

OBJECTIVE. The purpose of this study is to determine the impact of shear-wave elastography (SWE) image quality parameters on the diagnostic performance of elasticity measurements in classifying breast lesions. MATERIALS AND METHODS. This retrospective study included 281 breast lesions that underwent SWE and ultrasound-guided biopsy performed between October 1, 2017, and August 31, 2018. Three readers who were blinded to pathologic outcomes independently scored the image quality of each SWE image (with low quality denoted by a score of 0 and high quality indicated by a score of 1) on the basis of five parameters: B-mode visualization of the lesion on a dual-panel display, SWE red pattern (denoting high stiffness) in the near field of the FOV, appearance of the surrounding tissue, FOV placement, and ROI placement for the maximum (Emax), minimum (Emin), mean (Emean), and SD (ESD) of Young modulus elasticity measurements. Using ROC analysis, we compared the performance of Emax, Emean, and ESD in diagnosing malignancy on low- and high-quality images on the basis of consensus (i.e., majority) scores for each individual quality parameter as well as two models combining a few of the quality parameters. RESULTS. Three quality parameters (B-mode visualization of the lesion, presence of a near-field red pattern, and the appearance of the surrounding tissue) showed moderate-to-substantial interobserver agreement. SWE images were considered high quality (n = 167) if both B-mode visualization and near-field red pattern received a consensus score of 1, and they were considered low quality (n = 114) if either parameter received a consensus score of 0. High-quality images had a statistically higher AUC value than low-quality images when Emax (p < .001), Emean (p = .002), and ESD (p < .001) were used as classifiers of malignancy. CONCLUSION. Quality parameters can support radiologists who are performing and interpreting breast SWE images. These quality parameters have the potential to improve the accuracy of SWE in differentiating malignant from benign breast lesions.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Ultrasonografía Mamaria/métodos , Adulto , Anciano , Mama/diagnóstico por imagen , Diagnóstico Diferencial , Femenino , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...