Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026701

RESUMEN

Objectives: Sensorineural hearing loss is common with advancing age, but even when hearing is normal or near normal in older persons, performance deficits are often seen for suprathreshold listening tasks such as understanding speech in background noise or localizing the direction sounds are coming from. This suggests there is also a more central source of the problem. Objectives of this study were to examine as a function of age (young adult to septuagenarian) performance on: 1) a spatial acuity task examining lateralization ability, and a spatial speech-in-noise (SSIN) recognition task, both measured in a hemi-anechoic sound field using a circular horizontal-plane loudspeaker array, and 2) a suprathreshold auditory temporal processing task and a spectro-temporal processing task, both measured under headphones. Further, we examined any correlations between the measures. Design: Subjects were 48 adults, aged 21 to 78, with either normal hearing or only a mild sensorineural hearing loss through 4000 Hz. The lateralization task measured minimum audible angle (MAA) for 500 and 4000 Hz narrowband noise (NBN) bursts in diffuse background noise for both an on-axis (subject facing 0°) and off-axis (facing 45°) listening condition at signal-to-noise ratios (SNRs) of -3, -6, -9, and -12 dB. For 42 of the subjects, SSIN testing was also completed for key word recognition in sentences in multi-talker babble noise; specifically, the separation between speech and noise loudspeakers was adaptively varied to determine the difference needed for 40% and 80% correct performance levels. Finally, auditory temporal processing ability was examined using the Temporal Fine Structure test (44 subjects), and the Spectro-Temporal Modulation test (46 subjects). Results: Mean lateralization performances were poorer (larger MAAs) in older compared to younger subjects, particularly in the more adverse listening conditions (i.e., for 4000 Hz, off-axis, and at poorer SNRs). Performance variability was notably higher for older subjects than for young adults. The 4000 Hz NBN bursts produced larger MAAs than did 500 Hz NBN bursts. The SSIN data also showed declining mean performance with age at both criterion levels, with greater variability again found for older subjects. Spearman rho analyses revealed some low to moderate, but significant correlation coefficients for age versus MAA and for age versus SSIN results. Results from both the TFS and STM showed decreased mean performance with aging, and revealed moderate, significant correlations, with the strongest relationship shown with the TFS test. Finally, of note, extended-high-frequency (EHF) hearing loss (measured between 9000 and 16,000 Hz) was found to increase with aging, but was not seen in the young adult subjects. Conclusions: Particularly for more adverse listening conditions, age-related deficits were found on both of the spatial hearing tasks and in temporal and spectro-temporal processing abilities. It may be that deficits in temporal processing ability contribute to poorer spatial hearing performance in older subjects due to inaccurate coding of binaural/interaural timing information sent from the periphery to the brainstem. In addition, EHF hearing loss may be a coexisting factor that impacts performance in older subjects.

2.
Hear Res ; 437: 108839, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429100

RESUMEN

The binaural interaction component (BIC) of the auditory brainstem response (ABR) is the difference obtained after subtracting the sum of right and left ear ABRs from binaurally evoked ABRs. The BIC has attracted interest as a biomarker of binaural processing abilities. Best binaural processing is presumed to require spectrally-matched inputs at the two ears, but peripheral pathology and/or impacts of hearing devices can lead to mismatched inputs. Such mismatching can degrade behavioral sensitivity to interaural time difference (ITD) cues, but might be detected using the BIC. Here, we examine the effect of interaural frequency mismatch (IFM) on BIC and behavioral ITD sensitivity in audiometrically normal adult human subjects (both sexes). Binaural and monaural ABRs were recorded and BICs computed from subjects in response to narrowband tones. Left ear stimuli were fixed at 4000 Hz while right ear stimuli varied over a ∼2-octave range (re: 4000 Hz). Separately, subjects performed psychophysical lateralization tasks using the same stimuli to determine ITD discrimination thresholds jointly as a function of IFM and sound level. Results demonstrated significant effects of IFM on BIC amplitudes, with lower amplitudes in mismatched conditions than frequency-matched. Behavioral ITD discrimination thresholds were elevated at mismatched frequencies and lower sound levels, but also more sharply modulated by IFM at lower sound levels. Combinations of ITD, IFM and overall sound level that resulted in fused and lateralized percepts were bound by the empirically-measured BIC, and also by model predictions simulated using an established computational model of the brainstem circuit thought to generate the BIC.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Localización de Sonidos , Masculino , Adulto , Femenino , Humanos , Estimulación Acústica/métodos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Tronco Encefálico/fisiología , Electroencefalografía , Localización de Sonidos/fisiología
3.
Ear Hear ; 42(3): 629-643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33141776

RESUMEN

OBJECTIVES: The binaural interaction component (BIC) of the auditory brainstem response (ABR) is obtained by subtracting the sum of the monaural right and left ear ABRs from the binaurally evoked ABR. The result is a small but prominent negative peak (herein called "DN1"), indicating a smaller binaural than summed ABR, which occurs around the latency of wave V or its roll-off slope. The BIC has been proposed to have diagnostic value as a biomarker of binaural processing abilities; however, there have been conflicting reports regarding the reliability of BIC measures in human subjects. The objectives of the current study were to: (1) examine prevalence of BIC across a large group of normal-hearing young adults; (2) determine effects of interaural time differences (ITDs) on BIC; and (3) examine any relationship between BIC and behavioral ITD discrimination acuity. DESIGN: Subjects were 40 normal-hearing adults (20 males and 20 females), aged 21 to 48 years, with no history of otologic or neurologic disorders. Midline ABRs were recorded from electrodes at high forehead (Fz) referenced to the nape of the neck (near the seventh cervical vertebra), with Fpz (low forehead) as the ground. ABRs were also recorded with a conventional earlobe reference for comparison to midline results. Stimuli were 90 dB peSPL biphasic clicks. For BIC measurements, stimuli were presented in a block as interleaved right monaural, left monaural, and binaural stimuli with 2000+ presentations per condition. Four measurements were averaged for a total of 8000+ stimuli per analyzed waveform. BIC was measured for ITD = 0 (simultaneous bilateral) and for ITDs of ±500 and ±750 µs. Subjects separately performed a lateralization task, using the same stimuli, to determine ITD discrimination thresholds. RESULTS: An identifiable BIC DN1 was obtained in 39 of 40 subjects at ITD = 0 µs in at least one of two measurement sessions, but was seen in lesser numbers of subjects in a single session or as ITD increased. BIC was most often seen when a subject was relaxed or sleeping, and less often when they fidgeted or reported neck tension, suggesting myogenic activity as a possible factor in disrupting BIC measurements. Mean BIC latencies systematically increased with increasing ITD, and mean BIC amplitudes tended to decrease. However, across subjects, there was no significant relationship between the amplitude or latency of the BIC and behavioral ITD thresholds. CONCLUSIONS: Consistent with previous studies, measurement of the BIC was time consuming and a BIC was sometimes difficult to obtain in awake normal-hearing subjects. The BIC will thus continue to be of limited clinical utility unless stimulus parameters and measurement techniques can be identified that produce a more robust response. Nonetheless, modulation of BIC characteristics by ITD supports the concept that the ABR BIC indexes aspects of binaural brainstem processing and thus may prove useful in selected research applications, e.g. in the examination of populations expected to have aberrant binaural signal processing ability.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Pruebas Auditivas , Estimulación Acústica , Tronco Encefálico , Electrodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA