Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35591710

RESUMEN

The aim of this study was to attempt to use barley malt as a natural, organic binder in the technology of molding sand. TGA analysis of the binder was performed, during which temperatures of thermal decomposition of its components were determined. The results of TG/DTG analysis show that a loss of ~75% of mass of the MB binder is organic matter. Over 50% of this is starch. The results indicate the possibility of using a binder made of barley malt as a binding material for quartz sand grains. This fact was confirmed by tests carried out with use of SEM. During the observations, it was found that barley malt forms smooth bridges connecting individual grains of quartz sand. The typical properties of molding sands with barley malt were also determined, compared to sands containing commonly used binders. At the same time, the influence of the content of this binder on flowability, permeability, strength properties, and wear resistance was assessed. It has been found that increasing the binder content in molding mass results in an increase in strength and wear resistance, as opposed to flowability and permeability. Test castings were also made. It was found that the addition of a binder made of barley malt has a positive effect on the surface quality of castings. This was confirmed by roughness measurements of the test castings. At the same time, a tendency to excessive gas evolution during pouring was shown, with higher contents of this binder. Moreover, greater amounts of barley malt in the molding sand (MB 5%) as compared to the lower content (MB 2%) increased the thickness of the burnt layer of the sand by 25%. This is due to the exothermic reaction when more binder is burnt. It is extremely important from the point of view of the regeneration of molding sand.

2.
Materials (Basel) ; 12(21)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731453

RESUMEN

Results of a study on influence of Cr, Mo and Al on the microstructure, abrasive wear and corrosion resistance of Ni-Mn-Cu cast iron in the as-cast and heat-treated conditions are presented. Because of the chilling effect of first two elements (tendency to create hard spots), graphitising Al was added to the alloys, with the highest concentration of Cr and Mo. All castings in the as-cast condition showed an austenitic matrix, guaranteeing good machinability. Heat treatment of raw castings, consisting in annealing at 500 °C for 4 h, resulted in partial transformation of austenite. As a result the carbon-supersaturated acicular ferrite, morphologically similar to bainitic ferrite was formed. The degree of this transformation increased with increasing concentrations of Cr and Mo, which successively decreased the thermodynamic stability of austenite. A change of matrix structure made it possible to significantly increase hardness and abrasive-wear resistance of castings. The largest increment of hardness and abrasion resistance was demonstrated by the castings with the highest total concentration of Cr and Mo with an addition of 0.4% Al. Introduction of Cr and Mo also resulted in an increase of corrosion resistance. In the heat-treated specimens, increasing the concentration of Cr and Mo resulted in a successive decrease of the depth of corrosion pits, with an increase in their number at the same time. This is very favourable from the viewpoint of corrosion resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA