Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e25417, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420388

RESUMEN

Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.

2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499464

RESUMEN

Astaxanthin is a red orange xanthophyll carotenoid produced mainly by microalgae but which can also be chemically synthesized. As demonstrated by several studies, this lipophilic molecule is endowed with potent antioxidant properties and is able to modulate biological functions. Unlike synthetic astaxanthin, natural astaxanthin (NAst) is considered safe for human nutrition, and its production is considered eco-friendly. The antioxidant activity of astaxanthin depends on its bioavailability, which, in turn, is related to its hydrophobicity. In this study, we analyzed the water-solubility of NAst and assessed its protective effect against oxidative stress by means of different approaches using a neuroblastoma cell model. Moreover, due to its highly lipophilic nature, astaxanthin is particularly protective against lipid peroxidation; therefore, the role of NAst in counteracting ferroptosis was investigated. This recently discovered process of programmed cell death is indeed characterized by iron-dependent lipid peroxidation and seems to be linked to the onset and development of oxidative-stress-related diseases. The promising results of this study, together with the "green sources" from which astaxanthin could derive, suggest a potential role for NAst in the prevention and co-treatment of chronic degenerative diseases by means of a sustainable approach.


Asunto(s)
Antioxidantes , Xantófilas , Humanos , Antioxidantes/farmacología , Peroxidación de Lípido , Xantófilas/farmacología , Muerte Celular
3.
Food Chem ; 379: 132156, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065488

RESUMEN

Three novel hydrophobic deep eutectic solvents (DESs) based on oleic acid and terpenes (thymol, dl-menthol, and geraniol) were prepared, characterized, and used to extract astaxanthin from the microalga Haematococcus pluvialis without any pre-treatment of the cells. The three DES were composed of Generally Recognized As Safe (GRAS) and edible ingredients. All the tested DESs gave astaxanthin recovery values of about 60 and 30% in 6 h if applied on freeze-dried biomass or directly on algae culture, respectively. The carotenoid profile was qualitatively identical to what was obtained by using traditional organic solvents, regardless of the DES used; the monoesters of astaxanthin with C18-fatty acids were the main compounds found in all the carotenoid extracts. The thymol:oleic acid DES (TAO) could preserve astaxanthin content after prolonged oxidative stress (40% of the astaxanthin initially extracted was still present after 13.5 h of light exposure), thanks to the superior antioxidant properties of thymol. The capacity of improving astaxanthin stability combined with the intrinsic safety and edibility of the DES components makes the formulation astaxanthin-TAO appealing for the food ingredients/additives industry.


Asunto(s)
Chlorophyceae , Disolventes Eutécticos Profundos , Ácido Oléico , Xantófilas
4.
Sci Total Environ ; 807(Pt 2): 150827, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627880

RESUMEN

Macroalgae produce several allelopathic substances, including polyunsaturated aldehydes (PUAs), which may inhibit photosynthesis and growth rates of other algal species, and grazing. Additionally, macroalgal structural complexity is an important factor in determining abundance patterns and size structure of epiphytic organisms. In this study the PUAs production of two Mediterranean macroalgae, Dictyopteris polypodioides, (DP, Phaeophyceae, Dictyotales) and Cystoseira compressa (CC, Phaeophyceae, Fucales), was characterized to clarify the relationships between the meiobenthic and microphytobenthic communities. Results showed a higher PUAs production and a diverse qualitative profile for DP, which reported long-chain compounds (i.e. C14-C16) as main aldehydes, than CC, with the short-chain C6:2 as the main compound, as well as variability among sampling times. A clear separation of the meiofauna and microphytobenthos assemblages was found for the macroalgae, but with different temporal trends. Dissimilarities were due to five microalgal orders, namely Naviculales, Lyrellales, Gonyaulacales (i.e. Ostreopsis), Bacillariales, and Licmophorales, and to the meiofaunal groups nematodes, copepods, and copepod nauplii, which were more abundant on DP than on CC. Results indicate that macroalgal complexity is a major determinant of the meiofaunal community structure (accounting for 26% of the variation), rather than PUAs production itself (17%). PUAs effects seem species-specific, thus affecting some grazers instead of the entire community. Conversely, microphytobenthos affected the meiofauna assemblages, particularly harpacticoids, confirming the role of these organisms as the primary food source of all marine food chain producers. Since PUAs are produced also by several epiphytic diatoms, the understanding of their effects on the community structure and on the relationships among taxa in the field is complicated and requires further in-depth investigations in simplified systems (i.e. microcosms).


Asunto(s)
Aldehídos , Ecosistema
5.
Int J Biol Macromol ; 191: 92-99, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34536471

RESUMEN

Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass-1 d-1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L-1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L-1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions.


Asunto(s)
Anabaena/metabolismo , Hidroxibutiratos/metabolismo , Microbiología Industrial/métodos , Poliésteres/metabolismo , Anabaena/crecimiento & desarrollo , Biomasa , Fósforo/metabolismo
6.
Biomolecules ; 11(8)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34439847

RESUMEN

Food waste is a global problem due to its environmental and economic impact, so there is great demand for the exploitation of new functional applications. The winemaking process leads to an incomplete extraction of high-value compounds, leaving the pomace still rich in polyphenols. This study was aimed at optimising and validating sustainable routes toward the extraction and further valorisation of these polyphenols, particularly for cosmeceutical applications. New formulations based on red grape pomace polyphenols and natural deep eutectic solvents (NaDESs) were here investigated, namely betaine combined with citric acid (BET-CA), urea (BET-U) and ethylene glycol (BET-EG), in which DESs were used both as extracting and carrying agents for polyphenols. The flavonoid profile determined by HPLC-MS/MS analysis showed similar malvidin content (51-56 µg mL-1) in the DES combinations, while BET-CA gave the best permeation performance in Franz cells, so it was further investigated in 3D human keratinocytes (HaCat spheroids) injured with the pro-oxidant agent menadione. BET-CA treatment showed good intracellular antioxidant activity (IC50 0.15 ± 0.02 µg mL-1 in malvidin content) and significantly decreased (p < 0.001) the release of the pro-inflammatory cytokine IL-8, improving cell viability. Thus, BET-CA formulation is worthy of investigation for potential use as a cosmetic ingredient to reduce oxidative stress and inflammation, which are causes of skin aging.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Eliminación de Residuos/métodos , Vitis/metabolismo , Cosméticos/química , Células HaCaT , Humanos , Estrés Oxidativo/efectos de los fármacos
7.
Sci Total Environ ; 795: 148778, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328945

RESUMEN

The diversity in the skeletal features of coral species is an outcome of their evolution, distribution and habitat. Here, we explored, from macro- to nano-scale, the skeletal structural and compositional characteristics of three coral species belonging to the genus Balanophyllia having different trophic strategies. The goal is to address whether the onset of mixotrophy influenced the skeletal features of B. elegans, B. regia, and B. europaea. The macroscale data suggest that the presence of symbiotic algae in B. europaea can lead to a surplus of energy input that increases its growth rate and skeletal bulk density, leading to larger and denser corals compared to the azooxanthellate ones, B. regia and B. elegans. The symbiosis would also explain the higher intra-skeletal organic matrix (OM) content, which is constituted by macromolecules promoting the calcification, in B. europaea compared to the azooxanthellate species. The characterization of the soluble OM also revealed differences between B. europaea and the azooxanthellate species, which may be linked to diverse macromolecular machineries responsible for skeletal biosynthesis and final morphology. Differently, the crystallographic features were homogenous among species, suggesting that the basic building blocks of skeletons remained a conserved trait in these related species, regardless of the trophic strategy. These results show changes in skeletal phenotype that could be triggered by the onset of mixotrophy, as a consequence of the symbiotic association, displaying remarkable plasticity of coral skeletons which repeatedly allowed this coral group to adapt to a range of changing environments throughout its geological history.


Asunto(s)
Antozoos , Animales , Calcificación Fisiológica , Arrecifes de Coral , Fenotipo , Esqueleto , Simbiosis
8.
Phytochemistry ; 189: 112826, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34102592

RESUMEN

Chemical interactions between macroalgae and other organisms play an important role in determining species compositions and dominance patterns, and can explain the widespread success of some species in establishing their predominant populations in a specific coastal area. Allelopathy could act as a self-regulatory strategy of the algal community, being not only a succession regulator but also an active mechanism maintaining the species diversity especially in a delimited environment, such as the benthic ecosystem. Polyunsaturated aldehydes (PUAs) are among the most studied allelopathic compounds and are commonly released into the aquatic environment by different phytoplankton species in response to environmental stressors (e.g. wounding, grazing, or competition for nutrients). Diatom-released PUAs were observed to affect phytoplankton community dynamics and structure, and showed inhibitory effects on the reproduction and development of marine invertebrates. As for macroalgae, there are only a few reports that attest to the production of PUAs, and mostly refer to Ulva spp. In this study, the production of PUAs by several Mediterranean macroalgae was investigated at different sampling times, aiming at providing the first evidence of potential allelochemical activity. Results highlighted the potential production by macroalgae of a variety of aldehydes, among which some have never reported so far. Some species (i.e. D. polypodioides and U. cf. rigida) were found to produce higher PUAs amounts than others, and even a wider variety of structures (e.g. length of the carbon chain); these species might exert strong effects on epiphytic species or other organisms of the benthic community, especially considering the differential sensitivities of the various taxa. A high dPUA concentration (order of µM) potentially due to the release of PUAs by algal species was found, and might affect the population dynamics of the epiphytic organisms (e.g. microalgae, meiofauna), of grazers, as well as of the microbial community.


Asunto(s)
Diatomeas , Algas Marinas , Aldehídos , Alelopatía , Ecosistema , Fitoplancton
9.
Front Bioeng Biotechnol ; 9: 624021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644018

RESUMEN

An overview of the main polyhydroxyalkanoates (PHA) recovery methods is here reported, by considering the kind of PHA-producing bacteria (single bacterial strains or mixed microbial cultures) and the chemico-physical characteristics of the extracted polymer (molecular weight and polydispersity index). Several recovery approaches are presented and categorized in two main strategies: PHA recovery with solvents (halogenated solvents, alkanes, alcohols, esters, carbonates and ketones) and PHA recovery by cellular lysis (with oxidants, acid and alkaline compounds, surfactants and enzymes). Comparative evaluations based on the recovery, purity and molecular weight of the recovered polymers as well as on the potential sustainability of the different approaches are here presented.

10.
ACS Appl Mater Interfaces ; 12(35): 39620-39629, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32820898

RESUMEN

Hydrogels and organogels are widely used as cleaning materials, especially when a controlled solvent release is necessary to prevent substrate damage. This situation is often encountered in the personal care and electronic components fields and represents a challenge in restoration, where the removal of a thin layer of aged varnish from a painting may compromise the integrity of the painting itself. There is an urgent need for new and effective cleaning materials capable of controlling and limiting the use of solvents, achieving at the same time high cleaning efficacy. In this paper, new sandwich-like composites that fully address these requirements are developed by using an organogel (poly(3-hydroxybutyrate) + γ-valerolactone) in the core and two external layers of electrospun nonwovens made of continuous submicrometric fibers produced by electrospinning (either poly(vinyl alcohol) or polyamide 6,6). The new composite materials exhibit an extremely efficient cleaning action that results in the complete elimination of the varnish layer with a minimal amount of solvent adsorbed by the painting layer after the treatment. This demonstrates that the combined materials exert a superficial action that is of utmost importance to safeguard the painting. Moreover, we found that the electrospun nonwoven layers act as mechanically reinforcement components, greatly improving the bending resistance of organogels and their handling. The characterization of these innovative cleaning materials allowed us to propose a mechanism to explain their action: electrospun fibers play the leading role by slowing down the diffusion of the solvent and by conferring to the entire composite a microstructured rough superficial morphology, enabling to achieve outstanding cleaning performance.

11.
Bioresour Technol ; 292: 121921, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31398547

RESUMEN

Phaeodactylum tricornutum is considered a promising source of polyunsaturated fatty acids (PUFAs), in particular eicosapentaenoic acid (EPA). In this study, P. tricornutum cultivation using waste products from anaerobic digestion (i.e. liquid digestate and CO2) was tested and scaled-up in closed and open prototype systems. The chemical composition of algal biomass was evaluated to optimize the lipid content. Algal productivity and composition, especially in terms of PUFAs, were not modified by the use of waste CO2. Digestate led to a lower protein (24%) content than medium (36-37%), without affecting lipid amount (about 37%). Algal and EPA productivity were nearly two-fold higher by using photobioreactors (0.075 g biomass L-1 day-1 and 1.62 mg EPA g-1 day-1) than open ponds, which are more influenced by environmental conditions. This study highlights that economic and environmental benefits could be achieved by using waste CO2 and liquid digestate from anaerobic digestion for microalgae cultivation.


Asunto(s)
Microalgas , Fotobiorreactores , Biocombustibles , Biomasa , Dióxido de Carbono , Estanques
12.
Chem Biodivers ; 15(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29164812

RESUMEN

Gorgonian corals play a structural role in temperate and tropical biogenic reefs, forming animal forests and creating biodiversity hot spots. In the Mediterranean Sea, slow-growing and long-lived gorgonian species are threatened by human disturbances and global environmental changes and concern about their conservation is rising. Alkaloid metabolites have proven to be essential in protecting these species from environmental stressors. Traditional profiling methodologies to detect these metabolites require a large quantity of living tissue. Here, the chemodiversity of gorgonian alkaloids was investigated by applying a fast and effective protocol combining extraction and derivatization using small-scale tissue samples and GC/MS analysis. The method was effective in identifying and quantifying alkaloids and guanine-based compounds. Eight N-heterocyclic compounds were found in six Mediterranean gorgonians differing for types and quantity. The metabolomic profile was conservative in species of the Eunicella genus, with three species sharing the same pattern. Conversely, Paramuricea clavata displayed a noticeable spatial pattern of variation among colonies collected in different locations. The analytical approach presented here proved to be effective, allowing rare, endangered, and small-sized species to be screened rapidly for detection of new compounds in order to explore their biological and ecological functions.


Asunto(s)
Alcaloides/análisis , Antozoos/química , Compuestos Heterocíclicos/análisis , Alcaloides/metabolismo , Animales , Compuestos Heterocíclicos/metabolismo , Mar Mediterráneo
13.
Environ Sci Technol ; 51(21): 12683-12691, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991443

RESUMEN

Polyhydroxyalkanoates (PHA) are a key constituent of excess sludge produced by Aerobic Sewage Sludge Treatment plants. The accumulation of significant amount of PHA inside aerobic microbial cells occurs when a surplus of an easily degradable carbon source (e.g., volatile fatty acids, VFA) is found in combination with other nutrients limitation. Herein, hydrothermal treatment (HT) of PHA-containing sludge at 300 and 375 °C was demonstrated to be effective in converting most (>70% w/w) of the bacterial PHA stored inside microbial cells into alkene/CO2 gas mixtures. Simultaneously, most of non-PHA biomass was converted into water-soluble compounds (50% carbon yield) that were acidogenic fermented to produce volatile fatty acids, ideal substrate to feed aerobic bacteria and produce more PHA. According to results here presented, HT of excess sludge with moderate (13%) PHA content can produce about 50 kg of alkenes per tonne of suspended solids treated, with a significant reduction of sludge mass (80% reduction of wet sludge volume) and consequent disposal cost.


Asunto(s)
Reactores Biológicos , Polihidroxialcanoatos , Alquenos , Ácidos Grasos Volátiles , Aguas del Alcantarillado
14.
Phytochemistry ; 142: 85-91, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28697398

RESUMEN

The production of polyunsaturated aldehydes (PUAs) has been reported by many planktonic diatoms, where they have been implicated in deleterious effects on copepod reproduction and growth of closeby microbes or suggested as infochemicals in shaping plankton interactions. This study investigates the production of PUAs by diatoms commonly occurring in the microphytobenthic communities in temperate regions: Tabularia affinis, Proschkinia complanatoides and Navicula sp. Results highlight the production of PUAs by the three benthic diatoms during stationary and decline phases, with intracellular concentrations from 1.8 to 154.4 fmol cell-1, which are within the range observed for planktonic species. The existence of a large family of PUAs, including some with four unsaturations, such as decatetraenal, undecatetraenal and tridecatetraenal, was observed. Since particulate and dissolved PUAs were positively correlated, together with cell lysis, equivalent concentrations may be released during late growth stages, which may affect benthic invertebrates grazing on them and other microalgae.


Asunto(s)
Aldehídos/química , Aldehídos/farmacología , Diatomeas/química , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/química , Cromatografía de Gases y Espectrometría de Masas , Estructura Molecular , Océanos y Mares
15.
Sci Rep ; 7(1): 1929, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28512344

RESUMEN

The intra-skeletal fatty acid concentration and composition of four Mediterranean coral species, namely Cladocora caespitosa, Balanophyllia europaea, Astroides calycularis and Leptopsammia pruvoti, were examined in young and old individuals living in three different locations of the Mediterranean Sea. These species are characterized by diverse levels of organization (solitary or colonial) and trophic strategies (symbiotic or non-symbiotic). Fatty acids have manifold fundamental roles comprehensive of membrane structure fluidity, cell signaling and energy storage. For all species, except for B. europaea, the intra-skeletal fatty acid concentration was significantly higher in young individuals than in old ones. Moreover, fatty acid concentration was higher in colonial corals than in solitary ones and in the symbiotic corals compared to non-symbiotic ones. Analysis by gas chromatography-mass spectrometry (GC-MS) revealed that palmitic acid (16:0) was the most abundant fatty acid, followed by stearic (18:0) in order of concentration. Oleic acid (18:1) was detected as the third main component only in skeletons from symbiotic corals. These results suggest that, in the limits of the studied species, intra-skeletal fatty acid composition and concentration may be used for specific cases as a proxy of level of organization and trophic strategy, and eventually coral age.


Asunto(s)
Antozoos/metabolismo , Ácidos Grasos/metabolismo , Animales , Antozoos/química , Ecología , Ácidos Grasos/química , Cromatografía de Gases y Espectrometría de Masas , Mar Mediterráneo
16.
Int J Pharm ; 524(1-2): 9-15, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28356226

RESUMEN

One of the most widely used approaches for improving drug permeation across the stratum corneum barrier of the skin is the use of chemical penetration enhancers, such as surfactants. In this study, two anionic surfactants, named C12-OPK and C18-OPK, were synthesized via condensation of itaconic acid and fatty amines, with C12 and C18 alkyl chains, respectively. Assessment of impacts on HaCaT keratinocyte cell viability was used as indicator of their potential to cause skin irritation 24h post exposure (Alamar Blue assay). The LC50 values of C12-OPK and C18-OPK (144 and 85mg/L, respectively) were lower than LC50 values of the most used commercial surfactants (e.g. SDS). The effect of different surfactant concentrations (up to ten times the critical micellar concentration, CMC) on hydrocortisone (HC) solubility and permeation through porcine skin was also evaluated. Results showed that drug solubility increased linearly with increasing concentrations of both surfactants, as a consequence of the association between drug and micelles. In vitro permeation results showed that the permeability coefficient increased at surfactant concentrations lower than the CMC. In particular, a higher enhancement effect on drug permeation was obtained with C18-OPK, due to its hydrophobic properties that ensured a more effective HC permeation in comparison to C12-OPK.


Asunto(s)
Hidrocortisona/química , Queratinocitos/efectos de los fármacos , Absorción Cutánea , Succinatos/química , Tensoactivos/química , Animales , Línea Celular , Humanos , Técnicas In Vitro , Micelas , Piel/efectos de los fármacos , Solubilidad , Porcinos
17.
Ecotoxicol Environ Saf ; 132: 87-93, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27285282

RESUMEN

In view of the potential use of pyrolysis-based technologies, it is crucial to understand the environmental hazards of pyrolysis-derived products, in particular bio-oils. Here, three bio-oils were produced from fast pyrolysis of pine wood and intermediate pyrolysis of corn stalk and poultry litter. They were fully characterized by chemical analysis and tested for their biodegradability and their ecotoxicity on the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. These tests were chosen as required by the European REACH regulation. These three bio-oils were biodegradable, with 40-60% of biodegradation after 28 days, and had EC50 values above 100mgL(-1) for the crustacean and above 10mgL(-1) for the alga, showing low toxicity to the aquatic life. The toxic unit approach was applied to verify whether the observed toxicity could be predicted from the data available for the substances detected in the bio-oils. The predicted values largely underestimated the experimental values.


Asunto(s)
Biomasa , Aceites , Animales , Biodegradación Ambiental , Pollos , Chlorophyta/efectos de los fármacos , Daphnia/efectos de los fármacos , Ecotoxicología , Estiércol , Aceites/metabolismo , Aceites/toxicidad , Pinus , Zea mays
18.
Bioresour Technol ; 189: 195-202, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25889806

RESUMEN

Polyhydroxyalkanoates (PHAs) can be extracted from mixed microbial cultures (MMCs) by means of dimethyl carbonate (DMC) or combination of DMC and sodium hypochlorite (NaClO). The protocol based on DMC, a green solvent never used before for the extraction of PHAs from MMC, allows an overall polymer recovery of 63%; also the purity and the molecular weight of the recovered polymers are good (98% and 1.2 MDa, respectively). The use of NaClO pretreatment before DMC extraction increases the overall PHA recovery (82%) but lowers the mean molecular weight to 0.6-0.2 MDa. A double extraction with DMC results to be the method of choice for the recovery of high quality PHAs from attractive but challenging MMCs.


Asunto(s)
Bacterias/metabolismo , Polihidroxialcanoatos/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos/microbiología , Solventes
19.
Colloids Surf B Biointerfaces ; 125: 142-50, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25483843

RESUMEN

In this study we have explored the effects of different groups of ionic liquids (ILs) on membrane fusion. The ILs used contain different head groups: N-methylimidazolium, 3-methylpyridinium and N-methylpyrrolidinium; short alkyl or ether functionalized side chains (with one or two ethoxy functionalities), paired with chloride anion. These ILs have been compared with 1-dodecyl-3-methylimidazolium bromide as example of a highly lipophilic IL. The effect of ILs on membrane fusion was investigated through pyrene steady state fluorescence probing, using the IE factor and excimer/monomer ratio (IE/IM) as parameters. The ratio between the vibronic bands of pyrene (I1/I3 ratio) has been used to monitor the effect of ILs on the aggregation properties of egg-PC liposomes. The effect of different ILs' families was evident; the pyridinium ILs induced a greater extent of fusion than pyrrolidinium and imidazolium ILs having the same side chain. Marginal effect could be attributed to different anions. ILs with short alkyl chains were usually more effective than ether functionalized ones. The aggregation behaviors of ILs having dioxygenated chains have been measured in buffer solution.


Asunto(s)
Líquidos Iónicos/farmacología , Liposomas/química , Fusión de Membrana/efectos de los fármacos , Fosfatidilcolinas/química , Animales , Pollos , Colorantes Fluorescentes , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/química , Líquidos Iónicos/química , Pirenos , Compuestos de Piridinio/química , Pirrolidinas/química , Espectrometría de Fluorescencia , Relación Estructura-Actividad
20.
Bioresour Technol ; 174: 256-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25463806

RESUMEN

The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil.


Asunto(s)
Biocombustibles/microbiología , Biotecnología/métodos , Microalgas/metabolismo , Temperatura , Agua/farmacología , Carbono/análisis , Mezclas Complejas/análisis , Gases/química , Lípidos/aislamiento & purificación , Nitrógeno/análisis , Proteínas/aislamiento & purificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...