Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Analyst ; 149(10): 2812-2825, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38644740

RESUMEN

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.


Asunto(s)
Separación Celular , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/sangre , Separación Celular/métodos , Separación Celular/instrumentación , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación
2.
Cells ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667269

RESUMEN

Fabry Disease (FD) is one of the most prevalent lysosomal storage disorders, resulting from mutations in the GLA gene located on the X chromosome. This genetic mutation triggers glo-botriaosylceramide (Gb-3) buildup within lysosomes, ultimately impairing cellular functions. Given the role of lysosomes in immune cell physiology, FD has been suggested to have a profound impact on immunological responses. During the past years, research has been focusing on this topic, and pooled evidence strengthens the hypothesis that Gb-3 accumulation potentiates the production of pro-inflammatory mediators, revealing the existence of an acute inflammatory process in FD that possibly develops to a chronic state due to stimulus persistency. In parallel, extracellular vesicles (EVs) have gained attention due to their function as intercellular communicators. Considering EVs' capacity to convey cargo from parent to distant cells, they emerge as potential inflammatory intermediaries capable of transporting cytokines and other immunomodulatory molecules. In this review, we revisit the evidence underlying the association between FD and altered immune responses and explore the potential of EVs to function as inflammatory vehicles.


Asunto(s)
Exosomas , Enfermedad de Fabry , Inflamación , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Humanos , Inflamación/patología , Exosomas/metabolismo , Animales , Vesículas Extracelulares/metabolismo
3.
Bioact Mater ; 37: 253-268, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38585489

RESUMEN

The chronic shortage of organs and tissues for transplantation represents a dramatic burden on healthcare systems worldwide. Tissue engineering offers a potential solution to address these shortages, but several challenges remain, with prevascularization being a critical factor for in vivo survival and integration of tissue engineering products. Concurrently, a different challenge hindering the clinical implementation of such products, regards their efficient preservation from the fabrication site to the bedside. Hypothermia has emerged as a potential solution for this issue due to its milder effects on biologic systems in comparison with other cold preservation methodologies. Its impact on prevascularization, however, has not been well studied. In this work, 3D prevascularized constructs were fabricated using adipose-derived stromal vascular fraction cells and preserved at 4 °C using Hypothermosol or basal culture media (α-MEM). Hypothermosol efficiently preserved the structural and cellular integrity of prevascular networks as compared to constructs before preservation. In contrast, the use of α-MEM led to a clear reduction in prevascular structures, with concurrent induction of high levels of apoptosis and autophagy at the cellular level. In vivo evaluation using a chorioallantoic membrane model demonstrated that, in opposition to α-MEM, Hypothermosol preservation retained the angiogenic potential of constructs before preservation by recruiting a similar number of blood vessels from the host and presenting similar integration with host tissue. These results emphasize the need of studying the impact of preservation techniques on key properties of tissue engineering constructs such as prevascularization, in order to validate and streamline their clinical application.

4.
Cytotherapy ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38483360

RESUMEN

BACKGROUND AIMS: Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity. The bioactive molecules secreted by MSCs, i.e. their secretome, have been associated with enhanced neuronal survival as well as a strong modulatory capacity of the microenvironments where the disease develops. The selection of the appropriate animal model is crucial in studies of efficacy assessment. Given the involvement of α-syn in the pathogenesis of PD, the evidence generated from the use of animal models that develop a pathologic phenotype due to the action of this protein is extremely valuable. Therefore, in this work, we established an animal model based on the viral vector-mediated overexpression of A53T α-syn and studied the impact of the secretome of bone marrow mesenchymal stromal cells MSC(M) as a therapeutic strategy. METHODS: Adult male rats were subjected to α-syn over expression in the nigrostriatal pathway to model dopaminergic neurodegeneration. The impact of locally administered secretome treatment from MSC(M) was studied. Motor impairments were assessed throughout the study coupled with whole-region (striatum and substantia nigra) confocal microscopy evaluation of histopathological changes associated with dopaminergic neurodegeneration and glial cell reactivity. RESULTS: Ten weeks after lesion induction, the animals received secretome injections in the substantia nigra pars compacta (SNpc) and striatum (STR). The secretome used was produced from bone marrow mesenchymal stromal cells MSC(M) expanded in a spinner flask (SP) system. Nine weeks later, animals that received the viral vector containing the gene for A53T α-syn and treated with vehicle (Neurobasal-A medium) presented dopaminergic cell loss in the SNpc and denervation in the STR. The treatment with secretome significantly reduced the levels of α-syn in the SNpc and protected the dopaminergic neurons (DAn) within the SNpc and STR. CONCLUSIONS: Our results are aligned with previous studies in both α-syn Caenorhabditis elegans models, as well as 6-OHDA rodent model, revealing that secretome exerted a neuroprotective effect. Moreover, these effects were associated with a modulation of microglial reactivity supporting an immunomodulatory role for the factors contained within the secretome. This further supports the development of new studies exploring the effects and the mechanism of action of secretome from MSC(M) against α-syn-induced neurotoxicity.

5.
Biomater Adv ; 159: 213798, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364446

RESUMEN

Polymer biomaterials are being considered for tissue regeneration due to the possibility of resembling different extracellular matrix characteristics. However, most current scaffolds cannot respond to physical-chemical modifications of the cell microenvironment. Stimuli-responsive materials, such as electroactive smart polymers, are increasingly gaining attention once they can produce electrical potentials without external power supplies. The presence of piezoelectricity in human tissues like cartilage and bone highlights the importance of electrical stimulation in physiological conditions. Although poly(vinylidene fluoride) (PVDF) is one of the piezoelectric polymers with the highest piezoelectric response, it is not biodegradable. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a promising copolymer of poly(hydroxybutyrate) (PHB) for tissue engineering and regeneration applications. It offers biodegradability, piezoelectric properties, biocompatibility, and bioactivity, making it a superior option to PVDF for biomedical purposes requiring biodegradability. Magnetoelectric polymer composites can be made by combining magnetostrictive particles and piezoelectric polymers to further tune their properties for tissue regeneration. These composites convert magnetic stimuli into electrical stimuli, generating local electrical potentials for various applications. Cobalt ferrites (CFO) and piezoelectric polymers have been combined and processed into different morphologies, maintaining biocompatibility for tissue engineering. The present work studied how PHBV/CFO microspheres affected neural and glial response in spinal cord cultures. It is expected that the electrical signals generated by these microspheres due to their magnetoelectric nature could aid in tissue regeneration and repair. PHBV/CFO microspheres were not cytotoxic and were able to impact neurite outgrowth and promote neuronal differentiation. Furthermore, PHBV/CFO microspheres led to microglia activation and induced the release of several bioactive molecules. Importantly, magnetically stimulated microspheres ameliorated cell viability after an in vitro ROS-induced lesion of spinal cord cultures, which suggests a beneficial effect on tissue regeneration and repair.


Asunto(s)
Compuestos Férricos , Polímeros de Fluorocarbono , Polímeros , Polivinilos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Microesferas , Cobalto , Hidroxibutiratos/farmacología , Poliésteres/farmacología
6.
Pharmaceutics ; 15(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140029

RESUMEN

The Warburg Effect is characterized by high rates of glucose uptake and lactate production. Monocarboxylate transporters (MCTs) are crucial to avoid cellular acidosis by internal lactate accumulation, being largely overexpressed by cancer cells and associated with cancer aggressiveness. The MCT1-specific inhibitor AZD3965 has shown encouraging results in different cancer models. However, it has not been tested in urothelial bladder cancer (UBC), a neoplasm where rates of recurrence, progression and platinum-based resistance are generally elevated. We used two muscle-invasive UBC cell lines to study AZD3965 activity regarding lactate production, UBC cells' viability and proliferation, cell cycle profile, and migration and invasion properties. An "in vivo" assay with the chick chorioallantoic membrane model was additionally performed, as well as the combination of the compound with cisplatin. AZD3965 demonstrated anticancer activity upon low levels of MCT4, while a general lack of sensitivity was observed under MCT4 high expression. Cell viability, proliferation and migration were reduced, cell cycle was arrested, and tumor growth "in vivo" was inhibited. The compound sensitized these MCT4-low-expressing cells to cisplatin. Thus, AZD3965 seems to display anticancer properties in UBC under a low MCT4-expression setting, but additional studies are necessary to confirm AZD3965 activity in this cancer model.

7.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623558

RESUMEN

Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.

8.
J Clin Med ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37297894

RESUMEN

Intermittent fasting (IF) is an emerging dietetic intervention that has been associated with improved metabolic parameters. Nowadays, the most common IF protocols are Alternate-Day Fasting (ADF) and Time-Restricted Fasting (TRF), but in this review and meta-analysis we have also considered Religious Fasting (RF), which is similar to TRF but against the circadian rhythm. The available studies usually include the analysis of a single specific IF protocol on different metabolic outcomes. Herein, we decided to go further and to conduct a systematic review and meta-analysis on the advantages of different IF protocols for metabolic homeostasis in individuals with different metabolic status, such as with obesity, diabetes mellitus type 2 (T2D) and metabolic syndrome (MetS). Systematic searches (PubMed, Scopus, Trip Database, Web of Knowledge and Embase, published before June 2022) of original articles in peer-review scientific journals focusing on IF and body composition outcomes were performed. Sixty-four reports met the eligibility criteria for the qualitative analysis and forty-seven for the quantitative analysis. Herein, we showed that ADF protocols promoted the major beneficial effects in the improvement of dysregulated metabolic conditions in comparison with TRF and RF protocols. Furthermore, obese and MetS individuals are the most benefited with the introduction of these interventions, through the improvement of adiposity, lipid homeostasis and blood pressure. For T2D individuals, IF impact was more limited, but associated with their major metabolic dysfunctions-insulin homeostasis. Importantly, through the integrated analysis of distinct metabolic-related diseases, we showed that IF seems to differently impact metabolic homeostasis depending on an individual's basal health status and type of metabolic disease.

9.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239846

RESUMEN

Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Leucocitos Mononucleares/patología , Biomarcadores , Inmunoglobulina M , Autofagia
10.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36900154

RESUMEN

Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.

11.
PLoS Genet ; 19(2): e1010641, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36791155

RESUMEN

Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.


Asunto(s)
Quinasas Ciclina-Dependientes , Proteínas de Saccharomyces cerevisiae , Quinasas Ciclina-Dependientes/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ciclinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatos/metabolismo , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Nutrients ; 14(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36297052

RESUMEN

Nutrition has relevant consequences for human health and increasing pieces of evidence indicate that medicinal mushrooms have several beneficial effects. One of the main issues in Western countries is represented by the challenges of aging and age-related diseases, such as neurodegenerative disorders. Among these, Parkinson's disease (PD) affects 10 million people worldwide and is associated with α-synuclein misfolding, also found in other pathologies collectively called synucleinopathies. Here, we show that aqueous extracts of two edible mushrooms, Grifola frondosa and Hericium erinaceus, represent a valuable source of ß-glucans and exert anti-aging effects in yeast. Their beneficial effects are mediated through the inhibition of the Ras/PKA pathway, with increased expression of heat shock proteins, along with a consistent increase of both mean and maximal lifespans. These fungal extracts also reduce the toxicity of α-synuclein heterologously expressed in yeast cells, resulting in reduced ROS levels, lower α-synuclein membrane localization, and protein aggregation. The neuroprotective activity of G. frondosa extract was also confirmed in a PD model of Drosophila melanogaster. Taken together, our data suggest the use of G. frondosa and H. erinaceus as functional food to prevent aging and age-related disorders, further supporting the neuro-healthy properties of these medicinal mushroom extracts.


Asunto(s)
Agaricales , Envejecimiento , Grifola , beta-Glucanos , Humanos , alfa-Sinucleína , beta-Glucanos/farmacología , Drosophila melanogaster , Proteínas de Choque Térmico , Agregado de Proteínas , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae
13.
Biochem Mol Biol Educ ; 49(6): 870-881, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34406714

RESUMEN

Medical students tend to have difficulties in developing a holistic view of metabolic pathway and hormone regulation. To address this issue, an interactive activity was implemented for first-year medical students at the School of Medicine, University of Minho, Portugal. Students' previous knowledge on metabolic pathways was evaluated by a pre-test followed by an interactive activity. In the supervised activity, students were challenged to elaborate a diagrammatic representation regarding enzymes, co-factors, and hormonal metabolic regulation in early fasting during the night, as well as in well-fed conditions. The activity was concluded with a post-test to determine the students' learning gains and a few days later students were evaluated by a final exam. Afterwards, students evaluated the activity by filling a questionnaire. Results from four different cohorts showed that the activity resulted in significant learning gains, particularly favoring students who have less prior knowledge. The comparison between the pre-test and the final exam also revealed significant learning gains for low achievers students. On the questionnaires, the majority of the students rated the activity as good or very good. Students agreed that this activity promotes: (a) reactivation of previous knowledge; (b) a better understanding of the interconnections between the metabolic pathways; (c) the application of learned concepts in real scenarios; and (d) sharing knowledge with peers. This study describes an active, unpretentious, and easily implemented activity available for early medical and biochemical curricula.


Asunto(s)
Educación de Pregrado en Medicina , Estudiantes de Medicina , Curriculum , Evaluación Educacional , Humanos , Aprendizaje
14.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809172

RESUMEN

The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10-5) and ATG5 (p = 6.28 × 10-4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 ß levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 ß levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16- cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.

15.
Cancers (Basel) ; 13(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809750

RESUMEN

Acute myeloid leukemia (AML) is the most common acute leukemia, characterized by a heterogeneous genetic landscape contributing, among others, to the occurrence of metabolic reprogramming. Autophagy, a key player on metabolism, plays an essential role in AML. Here, we examined the association of three potentially functional genetic polymorphisms in the ATG10 gene, central for the autophagosome formation. We screened a multicenter cohort involving 309 AML patients and 356 healthy subjects for three ATG10 SNPs: rs1864182T>G, rs1864183C>T and rs3734114T>C. The functional consequences of the ATG10 SNPs in its canonical function were investigated in vitro using peripheral blood mononuclear cells from a cohort of 46 healthy individuals. Logistic regression analysis adjusted for age and gender revealed that patients carrying the ATG10rs1864182G allele showed a significantly decreased risk of developing AML (OR [odds ratio] = 0.58, p = 0.001), whereas patients carrying the homozygous ATG10rs3734114C allele had a significantly increased risk of developing AML (OR = 2.70, p = 0.004). Functional analysis showed that individuals carrying the ATG10rs1864182G allele had decreased autophagy when compared to homozygous major allele carriers. Our results uncover the potential of screening for ATG10 genetic variants in AML prevention strategies, in particular for subjects carrying other AML risk factors such as elderly individuals with clonal hematopoiesis of indeterminate potential.

16.
Bioorg Chem ; 100: 103942, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32450388

RESUMEN

A selection of new chromeno[2,3-b]pyridines was prepared from chromenylacrylonitriles and N-substituted piperazines, using a novel and efficient synthetic procedure. The compounds were tested for their anticancer activity using breast cancer cell lines MCF-7, Hs578t and MDA-MB-231 and the non-neoplastic cell line MCF-10A for toxicity evaluation. In general, compounds showed higher activity towards the luminal breast cancer subtype (MCF-7), competitive with the reference compound Doxorubicin. The in vivo toxicity assay using C. elegans demonstrated a safe profile for the most active compounds. Chromene 3f revealed a promising drug profile, inhibiting cell growth and proliferation, inducing cell cycle arrest in G2/M phase, apoptosis and microtubule destabilization. The new compounds presented exciting bioactive features and may be used as lead compounds in cancer related drug discovery.


Asunto(s)
Antineoplásicos/química , Benzopiranos/química , Pirimidinas/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzopiranos/síntesis química , Benzopiranos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Pirimidinas/síntesis química , Pirimidinas/farmacología , Relación Estructura-Actividad
17.
Biology (Basel) ; 9(3)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245178

RESUMEN

Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the fact that autophagy is characterized by the flux of substrates whereas histology informs only about amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years. The importance of establishing clear-cut autophagy markers that can be used for tissue analysis cannot be underestimated. In this review, we attempt to summarize known techniques to quantify autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations that should be taken into consideration to improve the reliability and the interpretation of autophagy biomarkers in human tissue samples.

18.
Biochim Biophys Acta Biomembr ; 1862(8): 183255, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32145284

RESUMEN

The plant defensin HsAFP1 is characterized by broad-spectrum antifungal activity and induces apoptosis in Candida albicans. In this study, we performed a transcriptome analysis on C. albicans cultures treated with HsAFP1 to gain further insight in the antifungal mode of action of HsAFP1. Various genes coding for cell surface proteins, like glycosylphosphatidylinositol (GPI)-anchored proteins, and proteins involved in cation homeostasis, autophagy and in cell cycle were differentially expressed upon HsAFP1 treatment. The biological validation of these findings was performed in the model yeast Saccharomyces cerevisiae. To discriminate between events linked to HsAFP1's antifungal activity and those that are not, we additionally used an inactive HsAFP1 mutant. We demonstrated that (i) HsAFP1-resistent S. cerevisiae mutants that are characterized by a defect in processing GPI-anchors are unable to internalize HsAFP1, and (ii) moderate doses (FC50, fungicidal concentration resulting in 50% killing) of HsAFP1 induce autophagy in S. cerevisiae, while high HsAFP1 doses result in vacuolar dysfunction. Vacuolar function is an important determinant of replicative lifespan (RLS) under dietary restriction (DR). In line, HsAFP1 specifically reduces RLS under DR. Lastly, (iii) HsAFP1 affects S. cerevisiae cell cycle in the G2/M phase. However, the latter HsAFP1-induced event is not linked to its antifungal activity, as the inactive HsAFP1 mutant also impairs the G2/M phase. In conclusion, we demonstrated that GPI-anchored proteins are involved in HsAFP1's internalization, and that HsAFP1 induces autophagy, vacuolar dysfunction and impairment of the cell cycle. Collectively, all these data provide novel insights in the mode of action of HsAFP1 as well as in S. cerevisiae tolerance mechanisms against this peptide.


Asunto(s)
Autofagia/efectos de los fármacos , Defensinas/química , Heuchera/química , Saccharomyces cerevisiae/efectos de los fármacos , Antifúngicos/química , Antifúngicos/farmacología , Apoptosis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Defensinas/genética , Defensinas/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Saccharomyces cerevisiae/genética
19.
Anticancer Drugs ; 31(5): 507-517, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31934887

RESUMEN

Different types of tumors often present an overexpression of cyclooxygenase-2. The aim of this study was to evaluate the effects of parecoxib (NSAID, cyclooxygenase-2 selective inhibitor) in the behavior of the human osteosarcoma MG-63 cell line, concerning several biological features. Cells were exposed to several concentrations of parecoxib for 48 hours. Cell viability/proliferation, cyclooxygenase-2 expression, morphologic alterations, membrane integrity, cell cycle evaluation, cell death and genotoxicity were evaluated. When compared with untreated cells, parecoxib led to a marked decrease in cell viability/proliferation, in COX-2 expression and changes in cell morphology, in a concentration-dependent manner. Cell recuperation was observed after incubation with drug-free medium. Parecoxib exposure increased lactate dehydrogenase release, an arrest of the cell cycle at S-phase and G2/M-phase, as well as growth of the sub-G0/G1-fraction and increased DNA damage. Parecoxib led to a slight increase of necrosis regulated cell death in treated cells, and an increase of autophagic vacuoles, in a concentration-dependent manner. In this study, parecoxib showed antitumor effects in the MG-63 human osteosarcoma cells. The potential mechanism was inhibiting cell proliferation and promoting necrosis. These results further suggested that parecoxib might be a potential candidate for in-vivo studies.


Asunto(s)
Neoplasias Óseas/patología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/química , Isoxazoles/farmacología , Osteosarcoma/patología , Apoptosis , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/enzimología , Ciclo Celular , Proliferación Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/enzimología , Células Tumorales Cultivadas
20.
Microb Cell ; 6(11): 509-523, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31799324

RESUMEN

During vinification Saccharomyces cerevisiae cells are frequently exposed to high concentrations of sulfur dioxide (SO2) that is used to avoid overgrowth of unwanted bacteria or fungi present in the must. Up to now the characterization of the molecular mechanisms by which S. cerevisiae responds and tolerates SO2 was focused on the role of the sulfite efflux pump Ssu1 and investigation on the involvement of other players has been scarce, especially at a genome-wide level. In this work, we uncovered the essential role of the poorly characterized transcription factor Com2 in tolerance and response of S. cerevisiae to stress induced by SO2 at the enologically relevant pH of 3.5. Transcriptomic analysis revealed that Com2 controls, directly or indirectly, the expression of more than 80% of the genes activated by SO2, a percentage much higher than the one that could be attributed to any other stress-responsive transcription factor. Large-scale phenotyping of the yeast haploid mutant collection led to the identification of 50 Com2-targets contributing to the protection against SO2 including all the genes that compose the sulfate reduction pathway (MET3, MET14, MET16, MET5, MET10) and the majority of the genes required for biosynthesis of lysine (LYS2, LYS21, LYS20, LYS14, LYS4, LYS5, LYS1 and LYS9) or arginine (ARG5,6, ARG4, ARG2, ARG3, ARG7, ARG8, ORT1 and CPA1). Other uncovered determinants of resistance to SO2 (not under the control of Com2) included genes required for function and assembly of the vacuolar proton pump and enzymes of the antioxidant defense, consistent with the observed cytosolic and mitochondrial accumulation of reactive oxygen species in SO2-stressed yeast cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...