Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 138: 112612, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38968862

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive and fatal cancer. The prognosis is very poor and no optimal chemotherapy has been established. Human epidermal growth factor receptor 2 (HER2, neu, and erbB2) is highly-expressed in breast cancer and is expressed in many other tumors but poorly expressed in CCA. The anti-HER2 antibody, trastuzumab, has been used for the treatment of HER2-positive breast and gastric cancer. In this study, we examined the surface expression of HER2 on seven Thai liver-fluke-associated CCA cell lines by flow cytometry, and found all of these CCA cells were weakly positive for HER2. MTT assay revealed that trastuzumab directly suppressed the growth of CCA. By using FcR-bearing recombinant Jurkat T-cell-expressing firefly luciferase gene under the control of NFAT response elements, we defined the activities of antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP). ADCC was confirmed by using expanded NK cells. ADCP was confirmed by using mouse peritoneal macrophages and human monocyte-derived macrophages as effector cells. Rabbit serum was administered to test the complement-dependent cytotoxicity (CDC) activity of trastuzumab. Finally, we evaluated the efficacy of trastuzumab in in vivo patient-derived cell xenograft and patient-derived xenograft (PDX) models. Our results showed that a distinct population of CCA (liver-fluke-associated CCA) expressed HER2. Trastuzumab demonstrated a potent inhibitory effect on even HER2 weakly positive CCA both in vitro and in vivo via multiple mechanisms. Thus, HER2 is a promising target in anti-CCA therapy, and trastuzumab can be considered a promising antibody immunotherapy agent for the treatment of CCA.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos Inmunológicos , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Trastuzumab , Animales , Femenino , Humanos , Masculino , Ratones , Conejos , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antineoplásicos Inmunológicos/farmacología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/inmunología , Línea Celular Tumoral , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/inmunología , Células Jurkat , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Receptor ErbB-2/antagonistas & inhibidores , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Anticancer Res ; 44(3): 1023-1031, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423667

RESUMEN

BACKGROUND/AIM: Multiple myeloma (MM), the second most common hematological malignancy, is characterized by the accumulation of malignant plasma cells within the bone marrow. Despite various drug classes for MM treatment, it remains incurable, necessitating novel and efficacious agents. This study aims to explore the anti-cancer activity of a midkine inhibitor, iMDK (C21H13FN2O2S), in myeloma cell lines. MATERIALS AND METHODS: This study assessed the antiproliferative activity using the MTT assay. Cell cycle and apoptosis were evaluated using flow cytometry. To further investigate the inhibitory mechanism, western blotting was used to detect cell cycle-related proteins, pro-apoptotic proteins, and anti-apoptotic proteins. RESULTS: iMDK inhibits MM cell proliferation in a dose- and time-dependent manner, inducing cell cycle arrest and apoptosis. The reduction in Cdc20 expression by iMDK treatment leads to G2/M phase cell cycle arrest. Furthermore, iMDK down-regulates anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-1, and c-FLIP), thereby activating both intrinsic and extrinsic apoptosis pathways. CONCLUSION: iMDK could be a potential candidate for MM treatment.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Midkina , Línea Celular Tumoral , Apoptosis , Puntos de Control del Ciclo Celular , Ciclo Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular
3.
Cancers (Basel) ; 16(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398194

RESUMEN

Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.

4.
Free Radic Biol Med ; 211: 1-11, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092271

RESUMEN

The transcription factor Nuclear factor e2-related factor 2 (Nrf2) is pivotal in orchestrating cellular antioxidant defense mechanisms, particularly in skin cells exposed to ultraviolet (UV) radiation and electrophilic phytochemicals. To comprehensively investigate Nrf2's role in maintaining cellular redox equilibrium following UV-induced stress, we engineered a novel Nrf2 fusion-based reporter system for real-time, live-cell quantification of Nrf2 activity in human melanoma cells. Utilizing live quantitative imaging, we dissected the kinetic profiles of Nrf2 activation in response to an array of stimuli, including UVA and UVB radiation, as well as a broad spectrum of phytochemicals including ferulic acid, gallic acid, hispidulin, p-coumaric acid, quercetin, resveratrol, tannic acid, and vanillic acid as well as well-known Nrf2 inducers, tert-butylhydroquinone (tBHQ) and sulforaphane (SFN). Intriguingly, we observed distinct dynamical patterns of Nrf2 activity contingent on the specific stimuli applied. Sustained activation of Nrf2 was empirically correlated with the increased antioxidant response element (ARE) activity. Our findings demonstrate the nuanced impact of different phenolic compounds on Nrf2 activity and the utility of our Nrf2-CTΔ16-YFP reporter in characterizing the dynamics of Nrf2 translocation in response to diverse stimuli. In summary, our innovative reporter system not only revealed compounds capable of modulating UVA-induced Nrf2 activity but also showcased its utility as a robust tool for future antioxidant compound screening efforts.


Asunto(s)
Antioxidantes , Melanoma , Humanos , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Melanoma/genética , Elementos de Respuesta Antioxidante/genética , Estrés Oxidativo
5.
J Oral Pathol Med ; 52(10): 939-950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37756121

RESUMEN

BACKGROUND: Mucoepidermoid carcinoma is a rare salivary gland malignant tumour. This study aimed to investigate inflammatory and immune signatures of mucoepidermoid carcinoma by identifying potential proteo-transcriptomic biomarkers towards the development of precision immuno-oncology treatment strategies. METHODS: A total of 30 biopsies obtained from patients diagnosed with mucoepidermoid carcinoma between 2013 and 2022 were analysed after H&E staining for scoring of histological inflammatory stroma subtypes and inflammatory hotspots with QuPath. Multiplex immunofluorescence staining and NanoString nCounter PanCancer IO 360™ panel were used to assess stroma and tumour inflammation signatures in high grade mucoepidermoid carcinoma cases in the tumour microenvironment via proteomics and transcriptomics, respectively. RESULTS: Inflammatory cells within the histological inflammatory stroma inflammatory (HIS-INF/hot) tumour neighbourhoods were greater compared to the histological inflammatory stroma-immune desert (HIS-ID/cold) (p = 0.001). A similar trend was observed between treatment non-responders and responders in stroma neighbourhoods (p = 0.0625) and in stroma-to-interface inflammatory hotspots (p = 0.0081), indicating an augmented inflammatory response in hot tumours and non-responders. Furthermore, there were striking differences in the expression of pan-immune leukocyte marker CD45 between responders and non responders particularly in the tumour neighbourhoods (p = 0.0341), but such were not robust for PD-1 and macrophage fractions. Additionally, transcriptomic analysis revealed key differences in leukocyte activation profiles between responders and non-responders. CONCLUSION: This preliminary report unveils the importance of assessing immune leukocyte cellular fractions and pathways for future prognostic biomarker discoveries in mucoepidermoid carcinoma as per the involvement of CD45-driven inflammatory and immune mediators in high grade mucoepidermoid carcinoma in non-responders to treatment. These findings will potentially contribute to the development of novel personalised immunotherapies.


Asunto(s)
Carcinoma Mucoepidermoide , Neoplasias de las Glándulas Salivales , Humanos , Carcinoma Mucoepidermoide/metabolismo , Neoplasias de las Glándulas Salivales/patología , Pronóstico , Glándulas Salivales/metabolismo , Microambiente Tumoral
6.
PeerJ ; 11: e15350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334114

RESUMEN

Background: Triple-negative breast cancer (TNBC) is a rare and aggressive breast cancer subtype. Unlike the estrogen receptor-positive subtype, whose recurrence risk can be predicted by gene expression-based signature, TNBC is more heterogeneous, with diverse drug sensitivity levels to standard regimens. This study explored the benefit of gene expression-based profiling for classifying the molecular subtypes of Thai TNBC patients. Methods: The nCounter-based Breast 360 gene expression was used to classify Thai TNBC retrospective cohort subgroups. Their expression profiles were then compared against the previously established TNBC classification system. The differential characteristics of the tumor microenvironment and DNA damage repair signatures across subgroups were also explored. Results: Thai TNBC cohort could be classified into four main subgroups, corresponding to the LAR, BL-2, and M subtypes based on Lehmann's TNBC classification. The PAM50 gene set classified most samples as basal-like subtypes except for Group 1. Group 1 exhibited similar enrichment of the metabolic and hormone response pathways to the LAR subtype. Group 2 shared pathway activation with the BL-2 subtype. Group 3 showed an increase in the EMT pathway, similar to the M subtype. Group 4 showed no correlation with Lehmann's TNBC. The tumor microenvironment (TME) analysis showed high TME cell abundance with increased expression of immune blockade genes in Group 2. Group 4 exhibited low TME cell abundance and reduced immune blockade gene expressions. We also observed distinct signatures of the DNA double-strand break repair genes in Group 1. Conclusions: Our study reported unique characteristics between the four TNBC subgroups and showed the potential use of immune checkpoint and PARP inhibitors in subsets of Thai TNBC patients. Our findings warrant further clinical investigation to validate TNBC's sensitivity to these regimens.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Transcriptoma , Neoplasias de la Mama Triple Negativas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Estudios Retrospectivos , Pueblos del Sudeste Asiático , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral/genética , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
7.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831441

RESUMEN

Colorectal cancers (CRC) with KRAS mutations (KRASmut) are frequently included in consensus molecular subtype 3 (CMS3) with profound metabolic deregulation. We explored the transcriptomic impact of KRASmut, focusing on the tumor microenvironment (TME) and pathways beyond metabolic deregulation. The status of KRASmut in patients with CRC was investigated and overall survival (OS) was compared with wild-type KRAS (KRASwt). Next, we identified CMS, and further investigated differentially expressed genes (DEG) of KRASmut and distinctive pathways. Lastly, we used spatially resolved gene expression profiling to define the effect of KRASmut in the TME regions of CMS3-classified CRC tissues. CRC patients with KRASmut were mainly enriched in CMS3. Their specific enrichments of immune gene signatures in immunosuppressive TME were associated with worse OS. Activation of TGFß signaling by KRASmut was related to reduced pro-inflammatory and cytokine gene signatures, leading to suppression of immune infiltration. Digital spatial profiling in TME regions of KRASmut CMS3-classified tissues suggested up-regulated genes, CD40, CTLA4, ARG1, STAT3, IDO, and CD274, that could be characteristic of immune suppression in TME. This study may help to depict the complex transcriptomic profile of KRASmut in immunosuppressive TME. Future studies and clinical trials in CRC patients with KRASmut should consider these transcriptional landscapes.

8.
Front Oncol ; 12: 1021632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531039

RESUMEN

Cholangiocarcinoma (CCA) is a highly lethal gastrointestinal malignancy that has one of the worst prognoses among solid tumors. The combination of Gemcitabine + Cisplatin (GEM/CIS) remains the standard first-line treatment for advanced stage CCA. However, this drug combination yields only a modest objective response rate, and in cases that initially respond to this treatment, drug resistance commonly rapidly develops. To improve the efficiency of GEM/CIS therapy for CCA, a thorough understanding of the mechanism of GEM/CIS resistance in CCA is required. To that end - in this study, we developed several acquired GEM/CIS-resistant CCA cell lines and we screened those cell lines for acquired vulnerability. The screening process revealed that subset of CCA with GEM/CIS resistance acquired vulnerability to the small-molecule second mitochondrial-derived activator of caspases (SMAC) mimetics LCL161 and Birinapant. The observed acquired vulnerability was found to be associated with upregulation of an inhibitor of apoptosis protein 2 (cIAP2), a known target of SMAC mimetics. LCL161 or cIAP2-shRNA downregulated cIAP2 and restored the sensitivity to GEM/CIS in GEM/CIS-resistant CCA cell lines and in in vivo GEM/CIS-resistant xenograft models. A strong synergic effect was observed when LCL161 was added to GEM/CIS. Interestingly, this synergism was also observed in drug-naïve CCA cell lines, xenografts, and patient-derived organoids. This triplet therapy also prevented the emergence of multidrug-resistant CCA in in vitro and in vivo models. Our findings suggest that activation of cIAP2 allows CCA to escape GEM/CIS, and that suppression of cIAP2 reestablishes the apoptotic profile of CCA, thus restoring its vulnerability to GEM/CIS. The results of this study indicate that combining the SMAC mimetic LCL161 with GEM/CIS inhibits and prevents the emergence of multidrug resistance in CCA.

9.
iScience ; 25(10): 105182, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36248745

RESUMEN

Cholangiocarcinoma (CCA) is rare cancer with the highest incidence in Eastern and Southeast Asian countries. Advanced CCA patients rely on chemotherapeutic regimens that offer unsatisfied clinical outcomes. We developed a comprehensive drug response profiling to investigate potential new drugs using CCA cell lines from Thai and Japanese patients against 100 approved anti-cancer drugs. We identified two major CCA subgroups that displayed unique molecular pathways from our integrative pan-omic and ligand-induced pathway activation analyses. MEK and Src inhibitors specifically killed the CCA1 subgroup without causing cytotoxicity to the normal cholangiocyte. Next, we developed the CCA45 signature to classify CCA patients based on their transcriptomic data. Our CCA45 signature could accurately predict prognosis, especially for Asian CCA patients. Our study provides a comprehensive public resource for drug repurposing in CCA and introduces analytical strategies for prioritizing cancer therapeutic agents for other rare cancer.

10.
Front Oncol ; 12: 877194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664774

RESUMEN

Cholangiocarcinoma (CCA) is one of the most difficult to treat cancers, and its nature of being largely refractory to most, if not all, current treatments results in generally poor prognosis and high mortality. Efficacious alternative therapies that can be used ubiquitously are urgently needed. Using acquired vulnerability screening, we observed that CCA cells that reprofile and proliferate under CDK4/6 inhibition became vulnerable to ribosomal biogenesis stress and hypersensitive to the anti-ribosome chemotherapy oxaliplatin. CCA cells overexpress the oncogenic ribosomal protein RPL29 under CDK4/6 inhibition in a manner that correlated with CDK4/6 inhibitor resistance. Depletion of RPL29 by small interfering RNAs (siRNAs) restored the sensitivity of CCA cells to CDK4/6 inhibition. Oxaliplatin treatment suppressed the RPL29 expression in the CDK4/6 inhibitor treated CCA cells and triggered RPL5/11-MDM2-dependent p53 activation and cancer apoptosis. In addition, we found that combination treatment with oxaliplatin and the CDK4/6 inhibitor palbociclib synergistically inhibited both parental and CDK4/6 inhibitor-resistant CCA, and prevented the emergence of CDK4/6 and oxaliplatin-resistant CCA. This drug combination also exerted suppressive and apoptosis effects on CCA in the in vitro 3-dimensional culture, patient-derived organoid, and in vivo xenograft CCA models. These results suggest the combination of the CDK4/6 inhibitor palbociclib and the anti-ribosome drug oxaliplatin as a potentially promising treatment for cholangiocarcinoma.

13.
Am J Ophthalmol Case Rep ; 23: 101189, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34401606

RESUMEN

PURPOSE: To report a case of aggressive infantile orbital embryonal rhabdomyosarcoma harboring germline ATM mutation and 2 somatic mutations as revealed by next-generation sequencing and the potential application for personalized therapy. OBSERVATIONS: A 7-month-old male developed a rapidly progressive left proptosis over 6 weeks due to a large medial orbital mass. Biopsy revealed embryonal rhabdomyosarcoma. After the first cycle of chemotherapy, re-imaging showed interval tumor enlargement with intracranial extension. Craniotomy, combined with orbital exenteration, was performed. Tumor specimens and blood samples were sent for 596 gene DNA sequencing panels with RNA-sequencing focused on actionable mutations as well as gene fusion detection. Sequencing revealed 3 clinically relevant mutations: a germline ATM loss-of-function (LOF) mutation, a somatic PIK3CA gain-of-function mutation, and a somatic BCOR LOF mutation. No chromosomal translocation was detected. Workup for metastasis was positive for bone marrow involvement. Despite standard high-dose adjuvant chemotherapy in combination with radiation therapy, the patient died 10 months later with metastatic diseases. CONCLUSIONS AND IMPORTANCE: This case highlights an aggressive form of embryonal rhabdomyosarcoma in an infantile orbit. The presence of germline mutation may explain the increased chemo-resistance and adverse prognosis, and may be used as the target for genomic-directed therapy.

14.
Biomolecules ; 10(12)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339185

RESUMEN

Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.


Asunto(s)
Técnicas Biosensibles , Daño del ADN , Reparación del ADN , Endófitos/química , Garcinia/microbiología , Extractos Vegetales/farmacología , Animales , Línea Celular , Supervivencia Celular , Pollos , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fermentación , Hongos/metabolismo , Garcinia/metabolismo , Histonas/metabolismo , Recombinación Homóloga , Plantas Medicinales , Semillas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
15.
Sci Rep ; 10(1): 931, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969633

RESUMEN

Wound healing assay is a simple and cost-effective in vitro assay for assessing therapeutic impacts on cell migration. Its key limitation is the possible confoundment by other cellular phenotypes, causing misinterpretation of the experimental outcome. In this study, we attempted to address this problem by developing a simple analytical approach for scoring therapeutic influences on both cell migration and cell death, while normalizing the influence of cell growth using Mitomycin C pre-treatment. By carefully mapping the relationship between cell death and wound closure rate, contribution of cell death and cell migration on the observed wound closure delay can be quantitatively separated at all drug dosing. We showed that both intrinsic cell motility difference and extrinsic factors such as cell seeding density can significantly affect final interpretation of therapeutic impacts on cellular phenotypes. Such discrepancy can be rectified by using the actual wound closure time of each treatment condition for the calculation of phenotypic scores. Finally, we demonstrated a screen for strong pharmaceutical inhibitors of cell migration in cholangiocarcinoma cell lines. Our approach enables accurate scoring of both migrastatic and cytotoxic effects, and can be easily implemented for high-throughput drug screening.


Asunto(s)
Ensayos de Migración Celular/métodos , Inhibición de Migración Celular , Movimiento Celular/efectos de los fármacos , Mitomicina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Inhibición de Migración Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos
16.
Hepatology ; 70(5): 1614-1630, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31077409

RESUMEN

Cholangiocarcinoma (CCA) is a bile duct cancer with a very poor prognosis. Currently, there is no effective pharmacological treatment available for it. We showed that CCA ubiquitously relies on cyclin-dependent kinases 4 and 6 (CDK4/6) activity to proliferate. Primary CCA tissues express high levels of cyclin D1 and the specific marker of CDK4/6 activity, phospho-RB Ser780. Treatment of a 15-CCA cell line collection by pharmacological CDK4/6 inhibitors leads to reduced numbers of cells in the S-phase and senescence in most of the CCA cell lines. We found that expression of retinoblastoma protein (pRB) is required for activity of the CDK4/6 inhibitor, and that loss of pRB conferred CDK4/6 inhibitor-drug resistance. We also identified that sensitivity of CCA to CDK4/6 inhibition is associated with the activated KRAS signature. Effectiveness of CDK4/6 inhibition for CCA was confirmed in the three-dimensional spheroid-, xenograft-, and patient-derived xenograft models. Last, we identified a list of genes whose expressions can be used to predict response to the CDK4/6 inhibitor. Conclusion: We investigated a ubiquitous dependency of CCA on CDK4/6 activity and the universal response to CDK4/6 inhibition. We propose that the CDK4/6-pRB pathway is a suitable therapeutic target for CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares/etiología , Colangiocarcinoma/etiología , Quinasa 4 Dependiente de la Ciclina/fisiología , Quinasa 6 Dependiente de la Ciclina/fisiología , Animales , Humanos , Ratones , Células Tumorales Cultivadas
17.
Cell Syst ; 6(6): 664-678.e9, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29886111

RESUMEN

Extracellular growth factors signal to transcription factors via a limited number of cytoplasmic kinase cascades. It remains unclear how such cascades encode ligand identities and concentrations. In this paper, we use live-cell imaging and statistical modeling to study FOXO3, a transcription factor regulating diverse aspects of cellular physiology that is under combinatorial control. We show that FOXO3 nuclear-to-cytosolic translocation has two temporally distinct phases varying in magnitude with growth factor identity and cell type. These phases comprise synchronous translocation soon after ligand addition followed by an extended back-and-forth shuttling; this shuttling is pulsatile and does not have a characteristic frequency, unlike a simple oscillator. Early and late dynamics are differentially regulated by Akt and ERK and have low mutual information, potentially allowing the two phases to encode different information. In cancer cells in which ERK and Akt are dysregulated by oncogenic mutation, the diversity of states is lower.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/fisiología , Línea Celular , Citosol/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Células MCF-7 , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
18.
J Cell Sci ; 131(12)2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29880532

RESUMEN

Expression of cyclin D1 (CCND1) is required for cancer cell survival and proliferation. This is presumably due to the role of cyclin D1 in inactivation of the RB tumor suppressor. Here, we investigated the pro-survival function of cyclin D1 in a number of cancer cell lines. We found that cyclin D1 depletion facilitated cellular senescence in several cancer cell lines. Senescence triggered by cyclin D1 depletion was more extensive than that caused by the prolonged CDK4 inhibition. Intriguingly, the senescence caused by cyclin D1 depletion was independent of RB status of the cancer cell. We identified a build-up of intracellular reactive oxygen species in the cancer cells that underwent senescence upon depletion of cyclin D1 but not in those cells where CDK4 was inhibited. The higher ROS levels were responsible for the cell senescence, which was instigated by the p38-JNK-FOXO3a-p27 pathway. Therefore, expression of cyclin D1 prevents cancer cells from undergoing senescence, at least partially, by keeping the level of intracellular oxidative stress at a tolerable sub-lethal level. Depletion of cyclin D1 promotes the RB-independent pro-senescence pathway and the cancer cells then succumb to the endogenous oxidative stress levels.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ciclina D1/deficiencia , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Ciclina D1/metabolismo , Humanos , Células MCF-7 , Proteína de Retinoblastoma/metabolismo
19.
PLoS One ; 12(11): e0187610, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29099866

RESUMEN

The FoxO3 transcription factor is a key regulator of oxidative stress and erythroid maturation during erythropoiesis. In this study, we explored the involvement of FoxO3 in severe ß-thalassemia. Using primary CD34+ hematopoietic progenitor cells from patients with ß-thalassemia major, we successfully developed an in vitro model of ineffective erythropoiesis. Based on this model, FoxO3 activity was quantified in single cells using high throughput imaging flow cytometry. This study revealed a significant reduction of FoxO3 activity during the late stage of erythroblast differentiation in ß-thalassemia, in contrast to erythropoiesis in normal cells that maintain persistent activation of FoxO3. In agreement with the decreased FoxO3 activity in ß-thalassemia, the expression of FoxO3 target genes was also found to decrease, concurrent with elevated phosphorylation of AKT, most clearly at the late stage of erythroid differentiation. Our findings provide further evidence for the involvement of FoxO3 during terminal erythropoiesis and confirm the modulation of the PI3K/AKT pathway as a potential therapeutic strategy for ß-thalassemia.


Asunto(s)
Eritroblastos/metabolismo , Proteína Forkhead Box O3/metabolismo , Talasemia beta/patología , Diferenciación Celular , Eritroblastos/patología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Talasemia beta/metabolismo
20.
Mol Microbiol ; 105(3): 440-452, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28513097

RESUMEN

Bacterial cell walls are composed of the large cross-linked macromolecule peptidoglycan, which maintains cell shape and is responsible for resisting osmotic stresses. This is a highly conserved structure and the target of numerous antibiotics. Obligate intracellular bacteria are an unusual group of organisms that have evolved to replicate exclusively within the cytoplasm or vacuole of a eukaryotic cell. They tend to have reduced amounts of peptidoglycan, likely due to the fact that their growth and division takes place within an osmotically protected environment, and also due to a drive to reduce activation of the host immune response. Of the two major groups of obligate intracellular bacteria, the cell wall has been much more extensively studied in the Chlamydiales than the Rickettsiales. Here, we present the first detailed analysis of the cell envelope of an important but neglected member of the Rickettsiales, Orientia tsutsugamushi. This bacterium was previously reported to completely lack peptidoglycan, but here we present evidence supporting the existence of a peptidoglycan-like structure in Orientia, as well as an outer membrane containing a network of cross-linked proteins, which together confer cell envelope stability. We find striking similarities to the unrelated Chlamydiales, suggesting convergent adaptation to an obligate intracellular lifestyle.


Asunto(s)
Orientia tsutsugamushi/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Orientia tsutsugamushi/química , Orientia tsutsugamushi/genética , Peptidoglicano/metabolismo , Rickettsiaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA