Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mutat ; 43(12): 1979-1993, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054329

RESUMEN

Detection of de novo variants (DNVs) is critical for studies of disease-related variation and mutation rates. To accelerate DNV calling, we developed a graphics processing units-based workflow. We applied our workflow to whole-genome sequencing data from three parent-child sequenced cohorts including the Simons Simplex Collection (SSC), Simons Foundation Powering Autism Research (SPARK), and the 1000 Genomes Project (1000G) that were sequenced using DNA from blood, saliva, and lymphoblastoid cell lines (LCLs), respectively. The SSC and SPARK DNV callsets were within expectations for number of DNVs, percent at CpG sites, phasing to the paternal chromosome of origin, and average allele balance. However, the 1000G DNV callset was not within expectations and contained excessive DNVs that are likely cell line artifacts. Mutation signature analysis revealed 30% of 1000G DNV signatures matched B-cell lymphoma. Furthermore, we found variants in DNA repair genes and at Clinvar pathogenic or likely-pathogenic sites and significant excess of protein-coding DNVs in IGLL5; a gene known to be involved in B-cell lymphomas. Our study provides a new rapid DNV caller for the field and elucidates important implications of using sequencing data from LCLs for reference building and disease-related projects.


Asunto(s)
Neoplasias , Humanos , Alelos , Mutación , Neoplasias/genética , Secuenciación Completa del Genoma
2.
HGG Adv ; 3(1): 100081, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047865

RESUMEN

While 9p deletion and duplication syndromes have been studied for several years, small sample sizes and minimal high-resolution data have limited a comprehensive delineation of genotypic and phenotypic characteristics. In this study, we examined genetic data from 719 individuals in the worldwide 9p Network Cohort: a cohort seven to nine times larger than any previous study of 9p. Most breakpoints occur in bands 9p22 and 9p24, accounting for 35% and 38% of all breakpoints, respectively. Bands 9p11 and 9p12 have the fewest breakpoints, with each accounting for 0.6% of all breakpoints. The most common phenotype in 9p deletion and duplication syndromes is developmental delay, and we identified eight known neurodevelopmental disorder genes in 9p22 and 9p24. Since it has been previously reported that some individuals have a secondary structural variant related to the 9p variant, we examined our cohort for these variants and found 97 events. The top secondary variant involved 9q in 14 individuals (1.9%), including ring chromosomes and inversions. We identified a gender bias with significant enrichment for females (p = 0.0006) that may arise from a sex reversal in some individuals with 9p deletions. Genes on 9p were characterized regarding function, constraint metrics, and protein-protein interactions, resulting in a prioritized set of genes for further study. Finally, we achieved precision genomics in one child with a complex 9p structural variation using modern genomic technologies, demonstrating that long-read sequencing will be integral for some cases. Our study is the largest ever on 9p-related syndromes and provides key insights into genetic factors involved in these syndromes.

3.
Bioinformatics ; 37(21): 3920-3922, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34601580

RESUMEN

MOTIVATION: An abundance of new reference genomes is becoming available through large-scale sequencing efforts. While the reference FASTA for each genome is available, there is currently no automated mechanism to query a specific sequence across all new reference genomes. RESULTS: We developed ACES (Analysis of Conservation with an Extensive list of Species) as a computational workflow to query specific sequences of interest (e.g. enhancers, promoters, exons) against reference genomes with an available reference FASTA. This automated workflow generates BLAST hits against each of the reference genomes, a multiple sequence alignment file, a graphical fragment assembly file and a phylogenetic tree file. These data files can then be used by the researcher in several ways to provide key insights into conservation of the query sequence. AVAILABILITY AND IMPLEMENTATION: ACES is available at https://github.com/TNTurnerLab/ACES. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Filogenia , Alineación de Secuencia , Exones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...