Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Data ; 10(1): 326, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264047

RESUMEN

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Biodiversidad , Ecosistema
3.
Sci Data ; 4: 170093, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28763055

RESUMEN

A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.


Asunto(s)
Plancton , Virus , Ecosistema , Genómica , Nucleótidos , Océanos y Mares
4.
PLoS One ; 8(8): e70747, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950996

RESUMEN

Microcystis aeruginosa is one of the most common bloom-forming cyanobacteria in freshwater ecosystems worldwide. This species produces numerous secondary metabolites, including microcystins, which are harmful to human health. We sequenced the genomes of ten strains of M. aeruginosa in order to explore the genomic basis of their ability to occupy varied environments and proliferate. Our findings show that M. aeruginosa genomes are characterized by having a large open pangenome, and that each genome contains similar proportions of core and flexible genes. By comparing the GC content of each gene to the mean value of the whole genome, we estimated that in each genome, around 11% of the genes seem to result from recent horizontal gene transfer events. Moreover, several large gene clusters resulting from HGT (up to 19 kb) have been found, illustrating the ability of this species to integrate such large DNA molecules. It appeared also that all M. aeruginosa displays a large genomic plasticity, which is characterized by a high proportion of repeat sequences and by low synteny values between the strains. Finally, we identified 13 secondary metabolite gene clusters, including three new putative clusters. When comparing the genomes of Microcystis and Prochlorococcus, one of the dominant picocyanobacteria living in marine ecosystems, our findings show that they are characterized by having almost opposite evolutionary strategies, both of which have led to ecological success in their respective environments.


Asunto(s)
Agua Dulce/microbiología , Genoma Bacteriano , Microcystis/genética , Microbiología del Agua , Composición de Base , Biología Computacional/métodos , Ecosistema , Orden Génico , Transferencia de Gen Horizontal , Tamaño del Genoma , Microcystis/clasificación , Microcystis/metabolismo , Familia de Multigenes , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
5.
Nat Commun ; 3: 1137, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23072807

RESUMEN

High-quality annotation of microsporidian genomes is essential for understanding the biological processes that govern the development of these parasites. Here we present an improved structural annotation method using transcriptional DNA signals. We apply this method to re-annotate four previously annotated genomes, which allow us to detect annotation errors and identify a significant number of unpredicted genes. We then annotate the newly sequenced genome of Anncaliia algerae. A comparative genomic analysis of A. algerae permits the identification of not only microsporidian core genes, but also potentially highly expressed genes encoding membrane-associated proteins, which represent good candidates involved in the spore architecture, the invasion process and the microsporidian-host relationships. Furthermore, we find that the ten-fold variation in microsporidian genome sizes is not due to gene number, size or complexity, but instead stems from the presence of transposable elements. Such elements, along with kinase regulatory pathways and specific transporters, appear to be key factors in microsporidian adaptive processes.


Asunto(s)
Genoma Fúngico/genética , Microsporidios/genética , Anotación de Secuencia Molecular , Transcripción Genética , Secuencia Conservada/genética , ADN de Hongos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Genómica , Sistemas de Lectura Abierta/genética , Fosfotransferasas/metabolismo , Transporte de Proteínas/genética
6.
G3 (Bethesda) ; 2(2): 299-311, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22384408

RESUMEN

Polyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages. In this article, we show that an osmotolerant yeast species, Pichia sorbitophila, recently isolated in a concentrated sorbitol solution in industry, illustrates this last situation. Its genome is a mosaic of homologous and homeologous chromosomes, or parts thereof, that corresponds to a recently formed hybrid in the process of evolution. The respective parental contributions to this genome were characterized using existing variations in GC content. The genomic changes that occurred during the short period since hybrid formation were identified (e.g., loss of heterozygosity, unilateral loss of rDNA, reciprocal exchange) and distinguished from those undergone by the two parental genomes after separation from their common ancestor (i.e., NUMT (NUclear sequences of MiTochondrial origin) insertions, gene acquisitions, gene location movements, reciprocal translocation). We found that the physiological characteristics of this new yeast species are determined by specific but unequal contributions of its two parents, one of which could be identified as very closely related to an extant Pichia farinosa strain.

7.
New Phytol ; 188(1): 42-51, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20456050

RESUMEN

• Ectocarpus siliculosus has been proposed as a genetic and genomic model for the brown algae and the 214 Mbp genome of this organism has been sequenced. The aim of this project was to obtain a chromosome-scale view of the genome by constructing a genetic map using microsatellite markers that were designed based on the sequence supercontigs. • To map genetic markers, a segregating F(2) population was generated from a cross between the sequenced strain (Ec 32) and a compatible strain from northern Chile. Amplified fragment length polymorphism (AFLP) analysis indicated a significant degree of polymorphism (41%) between the genomes of these two parental strains. Of 1,152 microsatellite markers that were selected for analysis based on their location on long supercontigs, their potential as markers and their predicted ability to amplify a single genomic locus, 407 were found to be polymorphic. • A genetic map was constructed using 406 markers, resulting in 34 linkage groups. The 406 markers anchor 325 of the longest supercontigs on to the map, representing 70.1% of the genome sequence. • The Ectocarpus genetic map described here not only provides a large-scale assembly of the genome sequence, but also represents an important tool for future genetic analysis using this organism.


Asunto(s)
Mapeo Cromosómico/métodos , Etiquetas de Secuencia Expresada , Genoma/genética , Phaeophyceae/genética , Secuencia de Bases , Segregación Cromosómica/genética , Mapeo Contig , Ligamiento Genético , Marcadores Genéticos , Polimorfismo Genético
8.
BMC Genomics ; 9: 603, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19087275

RESUMEN

BACKGROUND: Massively parallel DNA sequencing instruments are enabling the decoding of whole genomes at significantly lower cost and higher throughput than classical Sanger technology. Each of these technologies have been estimated to yield assemblies with more problematic features than the standard method. These problems are of a different nature depending on the techniques used. So, an appropriate mix of technologies may help resolve most difficulties, and eventually provide assemblies of high quality without requiring any Sanger-based input. RESULTS: We compared assemblies obtained using Sanger data with those from different inputs from New Sequencing Technologies. The assemblies were systematically compared with a reference finished sequence. We found that the 454 GSFLX can efficiently produce high continuity when used at high coverage. The potential to enhance continuity by scaffolding was tested using 454 sequences from circularized genomic fragments. Finally, we explore the use of Solexa-Illumina short reads to polish the genome draft by implementing a technique to correct 454 consensus errors. CONCLUSION: High quality drafts can be produced for small genomes without any Sanger data input. We found that 454 GSFLX and Solexa/Illumina show great complementarity in producing large contigs and supercontigs with a low error rate.


Asunto(s)
Genoma Bacteriano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Biología Computacional/métodos , Mapeo Contig , Biblioteca de Genes , Análisis de Secuencia de ADN/instrumentación
9.
Nature ; 421(6923): 601-7, 2003 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-12508121

RESUMEN

Chromosome 14 is one of five acrocentric chromosomes in the human genome. These chromosomes are characterized by a heterochromatic short arm that contains essentially ribosomal RNA genes, and a euchromatic long arm in which most, if not all, of the protein-coding genes are located. The finished sequence of human chromosome 14 comprises 87,410,661 base pairs, representing 100% of its euchromatic portion, in a single continuous segment covering the entire long arm with no gaps. Two loci of crucial importance for the immune system, as well as more than 60 disease genes, have been localized so far on chromosome 14. We identified 1,050 genes and gene fragments, and 393 pseudogenes. On the basis of comparisons with other vertebrate genomes, we estimate that more than 96% of the chromosome 14 genes have been annotated. From an analysis of the CpG island occurrences, we estimate that 70% of these annotated genes are complete at their 5' end.


Asunto(s)
Cromosomas Humanos Par 14/genética , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN , Regiones no Traducidas 5'/genética , Animales , Composición de Base , Cromosomas Artificiales/genética , Islas de CpG/genética , ADN Mitocondrial/genética , ADN Ribosómico/genética , Genes/genética , Genómica , Humanos , Inmunidad/genética , Ratones , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Seudogenes/genética , Reproducibilidad de los Resultados , Sintenía/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...