Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(3): e90056, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658054

RESUMEN

Melatonin receptor expression exhibits profound developmental changes through poorly understood mechanisms. In mammals, a current model suggests that pubertal reactivation of gonadotrophin-releasing hormone (GnRH) secretion down-regulates MT1 melatonin receptors in pituitary gonadotroph cells, via the induction of early growth response factor-1 (EGR-1). Here we have examined this model by testing the hypotheses that inhibition of Mt1 expression by GnRH occurs directly in gonadotroph cells, can be reversed in adulthood by blockade of GnRH receptors, and requires EGR-1. We first confirmed the endogenous expression of Mt1 mRNA in the αT3-1 gonadotroph cell line. Stimulation of these cells with a GnRH agonist resulted in a rapid increase of Egr-1 mRNA expression, which peaked after 30-60 minutes, and a more prolonged elevation of nuclear EGR-1 immunoreactivity. Moreover, the GnRH agonist significantly decreased Mt1 mRNA. We then treated adult male rats with the GnRH antagonist cetrorelix or saline. After 4 weeks of daily injections, cetrorelix significantly reduced serum LH concentration and testis weight, with histological analysis confirming absence of spermatogenesis. Despite the successful inhibition of GnRH signalling, pituitary Mt1 expression was unchanged. Next we studied the proximal region of the rat Mt1 promoter. Consistent with previous work, over-expression of the transcription factor PITX-1 increased Mt1-luciferase reporter activity; this effect was dependent on the presence of consensus PITX-1 promoter binding regions. Over-expression of EGR-1 inhibited PITX-1-stimulated activity, even following mutation of the consensus EGR-1 binding site. Finally, we studied Egr1-/- mice and observed no difference in pituitary Mt1 expression between Egr1-/- and wild-type litter mates. This work demonstrates that GnRH receptor activation directly down-regulates Mt1 expression in gonadotroph cells. However, pituitary Mt1 expression in adults is unaltered by blockade of GnRH signalling or absence of EGR-1. Our data therefore suggest that melatonin receptor regulation by GnRH is not reversible in adulthood and doesn't require EGR-1.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Receptor de Melatonina MT1/genética , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica , Gonadotrofos/metabolismo , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/farmacología , Antagonistas de Hormonas/farmacología , Masculino , Ratones , Factores de Transcripción Paired Box/metabolismo , Hipófisis/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor de Melatonina MT1/metabolismo , Receptores LHRH/metabolismo
2.
Hum Mol Genet ; 21(10): 2263-76, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22343141

RESUMEN

Dystrophin, the protein responsible for X-linked Duchenne muscular dystrophy (DMD), is normally expressed in both muscle and brain, which explains that its loss also leads to cognitive deficits. The utrophin protein, an autosomal homolog, is a natural candidate for dystrophin replacement in patients. Pharmacological upregulation of endogenous utrophin improves muscle physiology in dystrophin-deficient mdx mice, and represents a potential therapeutic tool that has the advantage of allowing delivery to various organs following peripheral injections. Whether this could alleviate cognitive deficits, however, has not been explored. Here, we first investigated basal expression of all utrophins and dystrophins in the brain of mdx mice and found no evidence for spontaneous compensation by utrophins. Then, we show that systemic chronic, spaced injections of arginine butyrate (AB) alleviate muscle alterations and upregulate utrophin expression in the adult brain of mdx mice. AB selectively upregulated brain utrophin Up395, while reducing expression of Up113 and Up71. This, however, was not associated with a significant improvement of behavioral functions typically affected in mdx mice, which include exploration, emotional reactivity, spatial and fear memories. We suggest that AB did not overcome behavioral and cognitive dysfunctions because the regional and cellular expression of utrophins did not coincide with dystrophin expression in untreated mice, nor did it in AB-treated mice. While treatments based on the modulation of utrophin may alleviate DMD phenotypes in certain organs and tissues that coexpress dystrophins and utrophins in the same cells, improvement of cognitive functions would likely require acting on specific dystrophin-dependent mechanisms.


Asunto(s)
Arginina/análogos & derivados , Encéfalo/metabolismo , Butiratos/farmacología , Distrofina/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Utrofina/metabolismo , Animales , Arginina/farmacología , Distrofina/deficiencia , Distrofina/genética , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular de Duchenne/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Utrofina/genética
3.
Neurobiol Dis ; 43(3): 635-41, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21624465

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin, a protein that fulfills important functions in both muscle and brain. The mdx mouse model of DMD, which also lacks dystrophin, shows a marked reduction in γ-aminobutyric acid type A (GABA(A))-receptor clustering in central inhibitory synapses and enhanced long-term potentiation (LTP) at CA3-CA1 synapses of the hippocampus. We have recently shown that U7 small nuclear RNAs modified to encode antisense sequences and expressed from recombinant adeno-associated viral (rAAV) vectors are able to induce skipping of the mutated exon 23 and to rescue expression of a functional dystrophin-like product both in the muscle and nervous tissue in vivo. In the brain, this rescue was accompanied by restoration of both the size and number of hippocampal GABA(A)-receptor clustering. Here, we report that 25.2±8% of re-expression two months after intrahippocampal injection of rAAV reverses the abnormally enhanced LTP phenotype at CA3-CA1 synapses of mdx mice. These results suggests that dystrophin expression indirectly influences synaptic plasticity through modulation of GABA(A)-receptor clustering and that re-expression of the otherwise deficient protein in the adult can significantly alleviate alteration of neural functions in DMD.


Asunto(s)
Distrofina/genética , Terapia Genética/métodos , Hipocampo/fisiología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Plasticidad Neuronal/genética , Sinapsis/genética , Factores de Edad , Animales , Dependovirus/genética , Potenciales Evocados/genética , Exones/genética , Femenino , Potenciación a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/fisiopatología , Inhibición Neural/genética , Técnicas de Cultivo de Órganos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA