Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EES Catal ; 2(2): 664-674, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38464594

RESUMEN

Photoelectrodes with FTO/Au/Sb2Se3/TiO2/Au architecture were studied in photoelectrochemical CO2 reduction reaction (PEC CO2RR). The preparation is based on a simple spin coating technique, where nanorod-like structures were obtained for Sb2Se3, as confirmed by SEM images. A thin conformal layer of TiO2 was coated on the Sb2Se3 nanorods via ALD, which acted as both an electron transfer layer and a protective coating. Au nanoparticles were deposited as co-catalysts via photo-assisted electrodeposition at different applied potentials to control their growth and morphology. The use of such architectures has not been explored in CO2RR yet. The photoelectrochemical performance for CO2RR was investigated with different Au catalyst loadings. A photocurrent density of ∼7.5 mA cm-2 at -0.57 V vs. RHE for syngas generation was achieved, with an average Faradaic efficiency of 25 ± 6% for CO and 63 ± 12% for H2. The presented results point toward the use of Sb2Se3-based photoelectrodes in solar CO2 conversion applications.

2.
Inorg Chem ; 63(5): 2401-2417, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38265361

RESUMEN

As cancer cells exhibit an increased uptake of iron, targeting the interaction with iron has become a straightforward strategy in the fight against cancer. This work comprehensively characterizes the chemical properties of 6-methyl-3-{(2E)-2-[1-(2-pyridinyl)ethylidene]hydrazino}-5H-[1,2,4]triazino[5,6-b]indole (VLX600), a clinically investigated iron chelator, in solution. Its protonation processes, lipophilicity, and membrane permeability as well as its complexation with essential metal ions were investigated using UV-visible, electron paramagnetic resonance, and NMR spectroscopic and computational methods. Formation constants revealed the following order of metal binding affinity at pH 7.4: Cu(II) > Fe(II) > Zn(II). The structures of VLX600 (denoted as HL) and the coordination modes in its metal complexes [Cu(II)(LH)Cl2], [Cu(II)(L)(CH3OH)Cl], [Zn(II)(LH)Cl2], and [Fe(II)(LH)2](NO3)2 were elucidated by single-crystal X-ray diffraction. Redox properties of the iron complexes characterized by cyclic voltammetry showed strong preference of VLX600 toward Fe(II) over Fe(III). In vitro cytotoxicity of VLX600 was determined in six different human cancer cell lines, with IC50 values ranging from 0.039 to 0.51 µM. Premixing VLX600 with Fe(III), Zn(II), and Cu(II) salts in stoichiometric ratios had a rather little effect overall, thus neither potentiating nor abolishing cytotoxicity. Together, although clinically investigated as an iron chelator, this is the first comprehensive solution study of VLX600 and its interaction with physiologically essential metal ions.


Asunto(s)
Complejos de Coordinación , Compuestos Férricos , Hidrazonas , Triazoles , Humanos , Cobre/farmacología , Cobre/química , Metales/química , Hierro/química , Iones , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Quelantes del Hierro/farmacología , Compuestos Ferrosos
3.
EES Catal ; 1(3): 263-273, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37213934

RESUMEN

While CO can already be produced at industrially relevant current densities via CO2 electrolysis, the selective formation of C2+ products seems challenging. CO electrolysis, in principle, can overcome this barrier, hence forming valuable chemicals from CO2 in two steps. Here we demonstrate that a mass-produced, commercially available polymeric pore sealer can be used as a catalyst binder, ensuring high rate and selective CO reduction. We achieved above 70% faradaic efficiency for C2+ products formation at j = 500 mA cm-2 current density. As no specific interaction between the polymer and the CO reactant was found, we attribute the stable and selective operation of the electrolyzer cell to the controlled wetting of the catalyst layer due to the homogeneous polymer coating on the catalyst particles' surface. These results indicate that sophistically designed surface modifiers are not necessarily required for CO electrolysis, but a simpler alternative can in some cases lead to the same reaction rate, selectivity and energy efficiency; hence the capital costs can be significantly decreased.

4.
Antioxidants (Basel) ; 12(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37107249

RESUMEN

In the current work, we first present a simple synthesis method for the preparation of novel Vitamin-B1-stabilized few-atomic gold nanoclusters with few atomic layers. The formed nanostructure contains ca. eight Au atoms and shows intensive blue emissions at 450 nm. The absolute quantum yield is 3%. The average lifetime is in the nanosecond range and three main components are separated and assigned to the metal-metal and ligand-metal charge transfers. Based on the structural characterization, the formed clusters contain Au in zero oxidation state, and Vitamin B1 stabilizes the metal cores via the coordination of pyrimidine-N. The antioxidant property of the Au nanoclusters is more prominent than that of the pure Vitamin B1, which is confirmed by two different colorimetric assays. For the investigation into their potential bioactivity, interactions with bovine serum albumin were carried out and quantified. The determined stoichiometry indicates a self-catalyzed binding, which is almost the same value based on the fluorometric and calorimetric measurements. The calculated thermodynamic parameters verify the spontaneous bond of the clusters along the protein chain by hydrogen bonds and electrostatic interactions.

5.
ACS Nano ; 16(10): 16668-16676, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36178781

RESUMEN

We measured the exciton dynamics in van der Waals heterojunctions of transition metal dichalcogenides (TMDCs) and organic semiconductors (OSs). TMDCs and OSs are semiconducting materials with rich and highly diverse optical and electronic properties. Their heterostructures, exhibiting van der Waals bonding at their interfaces, can be utilized in the field of optoelectronics and photovoltaics. Two types of heterojunctions, MoS2-pentacene and WSe2-pentacene, were prepared by layer transfer of 20 nm pentacene thin films as well as MoS2 and WSe2 monolayer crystals onto Au surfaces. The samples were studied by means of transient absorption spectroscopy in the reflectance mode. We found that A-exciton decay by hole transfer from MoS2 to pentacene occurs with a characteristic time of 21 ± 3 ps. This is slow compared to previously reported hole transfer times of 6.7 ps in MoS2-pentacene junctions formed by vapor deposition of pentacene molecules onto MoS2 on SiO2. The B-exciton decay in WSe2 shows faster hole transfer rates for WSe2-pentacene heterojunctions, with a characteristic time of 7 ± 1 ps. The A-exciton in WSe2 also decays faster due to the presence of a pentacene overlayer; however, fitting the decay traces did not allow for the unambiguous assignment of the associated decay time. Our work provides important insights into excitonic dynamics in the growing field of TMDC-OS heterojunctions.

6.
ACS Catal ; 12(16): 10127-10140, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36033366

RESUMEN

N-doped carbon (N-C) materials are increasingly popular in different electrochemical and catalytic applications. Due to the structural and stoichiometric diversity of these materials, however, the role of different functional moieties is still controversial. We have synthesized a set of N-C catalysts, with identical morphologies (∼27 nm pore size). By systematically changing the precursors, we have varied the amount and chemical nature of N-functions on the catalyst surface. The CO2 reduction (CO2R) properties of these catalysts were tested in both electrochemical (EC) and thermal catalytic (TC) experiments (i.e., CO2 + H2 reaction). CO was the major CO2R product in all cases, while CH4 appeared as a minor product. Importantly, the CO2R activity changed with the chemical composition, and the activity trend was similar in the EC and TC scenarios. The activity was correlated with the amount of different N-functions, and a correlation was found for the -NO x species. Interestingly, the amount of this species decreased radically during EC CO2R, which was coupled with the performance decrease. The observations were rationalized by the adsorption/desorption properties of the samples, while theoretical insights indicated a similarity between the EC and TC paths.

7.
Colloids Surf B Biointerfaces ; 216: 112531, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35525228

RESUMEN

Antioxidant colloids were developed via controlled heteroaggregation of cerium oxide nanoparticles (CeO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads. Positively charged CeO2 NPs were directly immobilized onto SL particles of opposite surface charge via electrostatic attraction (SL/Ce composite), while negatively charged CeO2 NPs were initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte and then, aggregated with the SL particles (SPCe composite). The PDADMAC served to induce a charge reversal on CeO2 NPs, while the SL support prevented nanoparticle aggregation under conditions, where the dispersions of bare CeO2 NPs were unstable. Both SL/Ce and SPCe showed enhanced radical scavenging activity compared to bare CeO2 NPs and were found to mimic peroxidase enzymes. The results demonstrate that SL beads are suitable supports to formulate CeO2 particles and to achieve remarkable dispersion storage stability. The PDADMAC functionalization and immobilization of CeO2 NPs neither compromised the peroxidase-like activity nor the radical scavenging potential. The obtained SL/Ce and SPCe artificial enzymes are foreseen to be excellent antioxidant agents in various applications in the biomedical, food, and cosmetic industries.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Antioxidantes , Coloides , Microesferas , Peroxidasas
8.
ACS Mater Au ; 1(2): 157-168, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34841423

RESUMEN

Titanium dioxide (TiO2) is often employed as a light absorber, electron-transporting material and catalyst in different energy and environmental applications. Heat treatment in a hydrogen atmosphere generates black TiO2 (b-TiO2), allowing better absorption of visible light, which placed this material in the forefront of research. At the same time, hydrogen treatment also introduces trap states, and the question of whether these states are beneficial or harmful is rather controversial and depends strongly on the application. We employed combined surface science and in situ electrochemical methods to scrutinize the effect of these states on the photoelectrochemical (PEC), electrocatalytic (EC), and charge storage properties of b-TiO2. Lower photocurrents were recorded with the increasing number of defect sites, but the EC and charge storage properties improved. We also found that the PEC properties can be enhanced by trap state passivation through Li+ ion intercalation in a two-step process. This passivation can only be achieved by utilizing small size cations in the electrolyte (Li+) but not with bulky ones (Bu4N+). The presented insights will help to resolve some of the controversies in the literature and also provide rational trap state engineering strategies.

9.
ACS Appl Mater Interfaces ; 13(36): 42650-42661, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34477369

RESUMEN

An efficient self-supported Cu(II)Bi(III) bimetallic catalyst with a layered structure was designed and developed. By careful characterization of the as-prepared material, the host structure was identified to exhibit a Sillen-type bismutite framework, with copper(II) ions being loaded as guests. The heterogeneous catalyst enabled C-N and C-S arylations under mild reaction conditions and with high chemoselectivities, thus furnishing valuable phenothiazines via heterocyclization with wide substrate tolerance. As corroborated by detailed catalytic studies, the cooperative, bifunctional catalyst, bearing Lewis acid sites along with copper(II) catalytic sites, facilitated an intriguing concerted C-N/C-S heterocyclization mechanism. The heterogeneous nature of the catalytic reactions was verified experimentally. Importantly, the catalyst was successfully recycled and reused multiple times, persevering its original structural order as well as its initial activity.

10.
J Mater Chem B ; 9(24): 4929-4940, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105573

RESUMEN

The preparation of an antioxidant hybrid material by controlled heteroaggregation of manganese oxide nanoparticles (MnO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads was accomplished. Negatively charged MnO2 NPs were prepared by precipitation and initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte to induce charge reversal allowing decoration of oppositely charged SL surfaces via simple mixing. The PDADMAC-functionalized MnO2 NPs (PMn) aggregated with the SL particles leading to the formation of negatively charged, neutral and positively charged (SPMn) composites. The charge neutralization resulted in rapidly aggregating dispersions, while stable samples were observed once the composites possessed sufficiently high negative and positive charge, below and above the charge neutralization point, respectively. The antioxidant assays revealed that SL served as a suitable substrate and that the PDADMAC functionalization and immobilization of MnO2 NPs did not compromise their catalase (CAT) and superoxide dismutase (SOD)-like activities, which were also maintained within a wide temperature range. The obtained SPMn composite is expected to be an excellent candidate as an antioxidant material for the efficient scavenging of reactive oxygen species at both laboratory and larger scales, even under harsh conditions, where natural antioxidants do not function.


Asunto(s)
Biocatálisis , Látex/química , Compuestos de Manganeso/química , Óxidos/química , Especies Reactivas de Oxígeno/química , Sulfatos/química
11.
Langmuir ; 37(10): 3057-3066, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33645991

RESUMEN

The construction of a donor-acceptor Stenhouse adduct molecular layer on a gold surface is presented. To avoid the incompatibility of the thiol surface-binding group with the donor-acceptor polyene structure of the switch, an interfacial reaction approach was followed. Poly(dopamine)-supported gold nanoparticles on quartz slides were chosen as substrates, which was expected to facilitate both the interfacial reaction and the switching process by providing favorable steric conditions due to the curved particle surface. The reaction between the surface-bound donor half and the CF3-isoxazolone-based acceptor half was proved to be successful by X-ray photoelectron spectroscopy (XPS). However, UV-vis measurements suggested that a closed, cyclopentenone-containing structure of the switch formed on the surface irreversibly. Analysis of the wetting behavior of the surface revealed spontaneous water spreading that could be associated with conformational changes of the closed isomer.

12.
J Am Chem Soc ; 142(52): 21595-21614, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33337148

RESUMEN

Metal-halide perovskites transformed optoelectronics research and development during the past decade. They have also gained a foothold in photocatalytic and photoelectrochemical processes recently, but their sensitivity to the most commonly applied solvents and electrolytes together with their susceptibility to photocorrosion hinders such applications. Understanding the elementary steps of photocorrosion of these materials can aid the endeavor of realizing stable devices. In this Perspective, we discuss both thermodynamic and kinetic aspects of photocorrosion processes occurring at the interface of perovskite photocatalysts and photoelectrodes with different electrolytes. We show how combined in situ and operando electrochemical techniques can reveal the underlying mechanisms. Finally, we also discuss emerging strategies to mitigate photocorrosion (such as surface protection, materials and electrolyte engineering, etc.).

13.
ACS Catal ; 10(10): 5681-5690, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32455054

RESUMEN

The electrochemical conversion of carbon dioxide (CO2) to high-value chemicals is an attractive approach to create an artificial carbon cycle. Tuning the activity and product selectivity while maintaining long-term stability, however, remains a significant challenge. Here, we study a series of Au-Pb bimetallic electrocatalysts with different Au/Pb interfaces, generating carbon monoxide (CO), formic acid (HCOOH), and methane (CH4) as CO2 reduction products. The formation of CH4 is significant because it has only been observed on very few Cu-free electrodes. The maximum CH4 formation rate of 0.33 mA cm-2 was achieved when the most Au/Pb interfaces were present. In situ Raman spectroelectrochemical studies confirmed the stability of the Pb native substoichiometric oxide under the reduction conditions on the Au-Pb catalyst, which seems to be a major contributor to CH4 formation. Density functional theory simulations showed that without Au, the reaction would get stuck on the COOH intermediate, and without O, the reaction would not evolve further than the CHOH intermediate. In addition, they confirmed that the Au/Pb bimetallic interface (together with the subsurface oxygen in the model) possesses a moderate binding strength for the key intermediates, which is indeed necessary for the CH4 pathway. Overall, this study demonstrates how bimetallic nanoparticles can be employed to overcome scaling relations in the CO2 reduction reaction.

14.
J Org Chem ; 85(8): 5158-5172, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32189503

RESUMEN

According to the currently accepted structure-property relationships, aceno-pentalenes with an angular shape (fused to the 1,2-bond of the acene) exhibit higher antiaromaticity than those with a linear shape (fused to the 2,3-bond of the acene). To explore and expand the current view, we designed and synthesized molecules where two isomeric, yet, different, 8π antiaromatic subunits, a benzocyclobutadiene (BCB) and a pentalene, are combined into, respectively, an angular and a linear topology via an unsaturated six-membered ring. The antiaromatic character of the molecules is supported experimentally by 1H NMR, UV-vis, and cyclic voltammetry measurements and X-ray crystallography. The experimental results are further confirmed by theoretical studies including the calculation of several aromaticity indices (NICS, ACID, HOMA, FLU, MCI). In the case of the angular molecule, double bond-localization within the connecting six-membered ring resulted in reduced antiaromaticity of both the BCB and pentalene subunits, while the linear structure provided a competitive situation for the two unequal [4n]π subunits. We found that in the latter case the BCB unit alleviated its unfavorable antiaromaticity more efficiently, leaving the pentalene with strong antiaromaticity. Thus, a reversed structure-antiaromaticity relationship when compared to aceno-pentalenes was achieved.

15.
J Am Chem Soc ; 141(27): 10812-10820, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31259546

RESUMEN

Halide ion mobility in metal halide perovskites remains an intriguing phenomenon, influencing their optical and photovoltaic properties. Selective injection of holes through electrochemical anodic bias has allowed us to probe the effect of hole trapping at iodide (0.9 V) and bromide (1.15 V) in mixed halide perovskite (CH3NH3PbBr1.5I1.5) films. Upon trapping holes at the iodide site, the iodide gradually gets expelled from the mixed halide film (as iodine and/or triiodide ion), leaving behind re-formed CH3NH3PbBr3 domains. The weakening of the Pb-I bond following the hole trapping (oxidation of the iodide site) and its expulsion from the lattice in the form of iodine provided further insight into the photoinduced segregation of halide ions in mixed halide perovskite films. Transient absorption spectroscopy revealed that the iodide expulsion process leaves a defect-rich perovskite lattice behind as charge carrier recombination in the re-formed lattice is greatly accelerated. The selective mobility of iodide species provides insight into the photoinduced phase segregation and its implication in the stable operation of perovskite solar cells.

16.
ACS Energy Lett ; 4(3): 702-708, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30882041

RESUMEN

Owing to its high hole conductivity and ease of preparation, CuI was among the first inorganic hole-transporting materials that were introduced early on in metal halide perovskite solar cells, but its full potential as a semiconductor material is still to be realized. We have now performed ultrafast spectroelectrochemical experiments on ITO/CuI electrodes to show the effect of applied bias on the excited-state dynamics in CuI. Under operating conditions, the recombination of excitons is dependent on the applied bias, and it can be accelerated by decreasing the potential from +0.6 to -0.1 V vs Ag/AgCl. Prebiasing experiments show the persistent and reversible "memory" effect of electrochemical bias on charge carrier lifetimes. The excitation of CuI in a CuI/CsPbBr3 film provides synergy between both CuI and CsPbBr3 in dictating the charge separation and recombination.

17.
J Phys Chem Lett ; 10(2): 259-264, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30601661

RESUMEN

Detailed mechanistic understanding of the optoelectronic features is a key factor in designing efficient and stable photoelectrodes. In situ spectroelectrochemical methods were employed to scrutinize the effect of trap states on the optical and electronic properties of CuI photoelectrodes and to assess their stability against (photo)electrochemical corrosion. The excitonic band in the absorption spectrum and the Raman spectral features were directly influenced by the applied bias potential. These spectral changes exhibit a good correlation with the alterations observed in the charge-transfer resistance. Interestingly, the population and depopulation of the trap states, which are responsible for the changes in both the optical and electronic properties, occur in a different potential/energy regime. Although cathodic photocorrosion of CuI is thermodynamically favored, this process is kinetically hindered, thus providing good stability in photoelectrochemical operation.

19.
Chem Mater ; 30(3): 561-569, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29503507

RESUMEN

The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and for assembling them into hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr3 and hybrid organic-inorganic MAPbI3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. The presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that comparisons can more easily be made.

20.
J Am Chem Soc ; 140(1): 86-89, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29129051

RESUMEN

The charging of a mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr3 as we increase the potential from -0.6 to +0.6 V vs Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...