Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(5): nwae091, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577671

RESUMEN

Relaxation processes are crucial for understanding the structural rearrangements of liquids and amorphous materials. However, the overarching principle that governs these processes across vastly different materials remains an open question. Substantial analysis has been carried out based on the motions of individual particles. Here, as an alternative, we propose viewing the global configuration as a single entity. We introduce a global order parameter, namely the inherent structure minimal displacement (IS Dmin), to quantify the variability of configurations by a pattern-matching technique. Through atomic simulations of seven model glass-forming liquids, we unify the influences of temperature, pressure and perturbation time on the relaxation dissipation, via a scaling law between the mechanical damping factor and IS Dmin. Fundamentally, this scaling reflects the curvature of the local potential energy landscape. Our findings uncover a universal origin of glassy relaxation and offer an alternative approach to studying disordered systems.

2.
Phys Chem Chem Phys ; 24(1): 497-506, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34904146

RESUMEN

The authors recently reported that undercooled liquid Ag and Ag-Cu alloys both exhibit a first order phase transition from the homogeneous liquid (L-phase) to a heterogeneous solid-like G-phase under isothermal evolution. Here, we report a similar L-G transition and heterogenous G-phase in simulations of liquid Cu-Zr bulk glass. The thermodynamic description and kinetic features (viscosity) of the L-G-phase transition in Cu-Zr simulations suggest it corresponds to experimentally reported liquid-liquid phase transitions in Vitreloy 1 (Vit1) and other Cu-Zr-bearing bulk glass forming alloys. The Cu-Zr G-phase has icosahedrally ordered cores versus fcc/hcp core structures in Ag and Ag-Cu with a notably smaller heterogeneity length scale Λ. We propose the L-G transition is a phenomenon in metallic liquids associated with the emergence of elastic rigidity. The heterogeneous core-shell nano-composite structure likely results from accommodating strain mismatch of stiff core regions by more compliant intervening liquid-like medium.

3.
Adv Sci (Weinh) ; 8(8): 2003524, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898176

RESUMEN

Despite the huge importance of friction in regulating movement in all natural and technological processes, the mechanisms underlying dissipation at a sliding contact are still a matter of debate. Attempts to explain the dependence of measured frictional losses at nanoscale contacts on the electronic degrees of freedom of the surrounding materials have so far been controversial. Here, it is proposed that friction can be explained by considering the damping of stick-slip pulses in a sliding contact. Based on friction force microscopy studies of La(1- x )Sr x MnO3 films at the ferromagnetic-metallic to a paramagnetic-polaronic conductor phase transition, it is confirmed that the sliding contact generates thermally-activated slip pulses in the nanoscale contact, and argued that these are damped by direct coupling into the phonon bath. Electron-phonon coupling leads to the formation of Jahn-Teller polarons and to a clear increase in friction in the high-temperature phase. There is neither evidence for direct electronic drag on the atomic force microscope tip nor any indication of contributions from electrostatic forces. This intuitive scenario, that friction is governed by the damping of surface vibrational excitations, provides a basis for reconciling controversies in literature studies as well as suggesting possible tactics for controlling friction.

4.
J Chem Phys ; 153(12): 124507, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003757

RESUMEN

A recently published analytical model describing and predicting elasticity, viscosity, and fragility of metallic melts is applied for the analysis of about 30 nonmetallic glassy systems, ranging from oxide network glasses to alcohols, low-molecular-weight liquids, polymers, plastic crystals, and even ionic glass formers. The model is based on the power-law exponent λ representing the steepness parameter of the repulsive part of the inter-atomic or inter-molecular potential and the thermal-expansion parameter αT determined by the attractive anharmonic part of the effective interaction. It allows fitting the typical super-Arrhenius temperature variation of the viscosity or dielectric relaxation time for various classes of glass-forming matter, over many decades. We discuss the relation of the model parameters found for all these different glass-forming systems to the fragility parameter m and detect a correlation of λ and m for the non-metallic glass formers, in accord with the model predictions. Within the framework of this model, the fragility of glass formers can be traced back to microscopic model parameters characterizing the intermolecular interactions.

5.
J Phys Condens Matter ; 32(34): 345101, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32303018

RESUMEN

Recently, ultrastable glasses gained growing attention due to the revelation of the mechanism leading towards the understanding of glasses and glass transition in general. We report the adaptation of vapor deposition techniques to create ultrastable amorphous phases of Cu50Zr50 with different mechanical properties. Investigations using atomic force acoustic microscopy reveal a connection between an enhanced elastic modulus, its low potential energy and its homogeneity throughout the sample. Here, higher stability is always accompanied by high homogeneity. We relate the preparation conditions to the resulting mechanical properties, potentially opening a path to systematically engineer ultrastability in metallic glasses. Furthermore, we give a qualitative explanation for our results in the framework of the potential energy landscape, providing insights to the origin of ultrastability in metallic glasses in general.

6.
NPJ Microgravity ; 6: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32219152

RESUMEN

Thermophysical properties of highly doped Si50Ge50 melt were measured contactlessly in the electromagnetic levitation facility ISS-EML on board the International Space Station. The sample could be melted, overheated by about 375 K, and cooled down in 350 mbar Argon atmosphere. A large undercooling of about 240 K was observed and a quasi-homogeneous nucleation on the droplet surface occurred. During the cooling phase, high-resolution videos were taken from the side and the top. The density and thermal expansion were evaluated with digital image processing; the viscosity and the surface tension were measured by means of the oscillating drop technique. Inductive measurements of the electrical resistivity were conducted by a dedicated electronics. All data were taken as a function of temperature T from the overheated melt down to the undercooled range. We found a nonlinear thermal expansion, suggesting a many body effect in the liquid beyond the regular pair interaction, an enhanced damping of surface oscillations likely related to an internal turbulent flow, and an increment of the electrical resistivity with decreased T in the undercooled range regarding a demixing of the components.

7.
J Phys Chem Lett ; 11(3): 632-645, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31903768

RESUMEN

A molten metal is an atomic liquid that lacks directional bonding and is free from chemical ordering effects. Experimentally, liquid metals can be undercooled by up to ∼20% of their melting temperature but crystallize rapidly in subnanosecond time scales at deeper undercooling. To address this limited metastability with respect to crystallization, we employed molecular dynamics simulations to study the thermodynamics and kinetics of the glass transition and crystallization in deeply undercooled liquid Ag. We present direct evidence that undercooled liquid Ag undergoes a first-order configurational freezing transition from the high-temperature homogeneous disordered liquid phase (L) to a metastable, heterogeneous, configurationally ordered state that displays elastic rigidity with a persistent and finite shear modulus, µ. We designate this ordered state as the G-phase and conclude it is a metastable non-crystalline phase. We show that the L-G transition occurs by nucleation of the G-phase from the L-phase. Both the L- and G-phases are metastable because both ultimately crystallize. The observed first-order transition is reversible: the G-phase displays a first-order melting transition to the L-phase at a coexistence temperature, TG,M. We develop a thermodynamic description of the two phases and their coexistence boundary.

8.
Phys Rev Lett ; 122(13): 136801, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31012616

RESUMEN

Materials exhibiting reversible resistive switching in electrical fields are highly demanded for functional elements in oxide electronics. In particular, multilevel switching effects allow for advanced applications like neuromorphic circuits. Here, we report a structurally driven switching mechanism involving the so-called "dead" layers of perovskite manganite surfaces. Forming a tunnel barrier whose thickness can be changed in monolayer steps by electrical fields, the switching effect exhibits well-defined and robust resistive states.

9.
J Chem Phys ; 150(11): 111104, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30902016

RESUMEN

Solid materials, whether crystalline or glasses, are characterized by their elasticity. Generally, elasticity is independent of the probing strain if it is not exceeding the yielding point. Here, by contrast, we experimentally capture a pronounced strain-dependent elasticity in metallic glasses, as manifested by nonlinear mechanical damping in the apparent elastic deformation regime (∼1/100 of the yielding strain). Normal damping behaviors recover at higher temperatures but still below the glass transition. Atomistic simulations reproduce these features and reveal that they could be related to avalanche-like local structural instabilities. Our findings demonstrate that the standard elasticity is not held for metallic glasses at low temperatures and plastic events can be triggered at small perturbations. These results are consistent with previous simulations of model glasses and a scenario of hierarchical free-energy landscape of mean-field theory.

10.
J Phys Condens Matter ; 30(46): 465803, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30247152

RESUMEN

The effect of magnetoelastic coupling on the mechanical behavior of magnetic metallic glasses is studied by superposing a magnetic field to the mechanical load during deformation experiments. The mechanical response is studied from the point of view of the global behavior, characterized by the Young's modulus, and from the perspective of the avalanches, estimated from the intermittency of the deformation signal. The influence of several intensities and orientations of magnetic field is analyzed in two amorphous alloys with different magnetostriction. For the highly magnetostrictive alloy, the decrease of the macroscopic Young's modulus under certain magnetic fields is accompanied by the promotion of mechanical avalanches, a fact that suggests that in this case the magnetoelastic coupling involves some extent of non-linear addition of the magnetic and mechanical energies.

11.
J Phys Chem Lett ; 9(19): 5877-5883, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30240226

RESUMEN

In glassy materials, the Johari-Goldstein secondary (ß) relaxation is crucial to many properties as it is directly related to local atomic motions. However, a long-standing puzzle remains elusive: why some glasses exhibit ß relaxations as pronounced peaks while others present as unobvious excess wings? Using microsecond atomistic simulation of two model metallic glasses (MGs), we demonstrate that such a difference is associated with the number of string-like collective atomic jumps. Relative to that of excess wings, we find that MGs having pronounced ß relaxations contain larger numbers of such jumps. Structurally, they are promoted by the higher tendency of cage-breaking events of their neighbors. Our results provide atomistic insights for different signatures of the ß relaxation that could be helpful for understanding the low-temperature dynamics and properties of MGs.

12.
J Phys Condens Matter ; 30(24): 245702, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29741491

RESUMEN

Exploring the atomic level structure in amorphous materials by STM becomes extremely difficult due to the localized electronic states. Here we carried out STM studies on a quasi-low-dimensional film of metallic glass Zr65Cu27.5Al7.5 which is 'ultrathin' compared with the localization length and/or the length scale of short range order. The local electronic structure must appear more inherent, having states at E f available for tip-sample tunneling current. To enhance imaging contrasts between long-range and short-range orders, the highly oriented pyrolytic graphite was chosen as substrate, so that the structural heterogeneity arising from competition between the glass former ability and the epitaxy can be ascertained. A chemical order predicted for this system was observed in atomic ordered regimes (1-2 monolayers), accompanied with a superstructure with the period Zr-Cu(Al)-Zr along three hexagonal axes. The result implies a chemical short range order in disordered regimes, where polyhedral clusters are dominant with the solute atom Cu(Al) in the center. An attempt for the structural modelling was made based on high resolution STM images, giving icosahedral order on the surface and different Voronoi clusters in 3D space.

13.
Phys Rev Lett ; 120(13): 135504, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694174

RESUMEN

As ultrastable metallic glasses (UMGs) are promising candidates to solve the stability issues of conventional metallic glasses, their study is of exceptional interest. By means of x-ray photon correlation spectroscopy, we have investigated the stability of UMGs at the atomic level. We find a clear signature of ultrastability at the atomic level that results in slower relaxation dynamics of UMGs with respect to conventional (rapidly quenched) metallic glasses, and in a peculiar acceleration of the dynamics by near T_{g} annealing. This surprising phenomenon, called here anti-aging, can be understood in the framework of the potential energy landscape. For all samples, the structural relaxation process can be described with a highly compressed shape of the density fluctuations, unaffected by thermal treatments and regardless of the ultrastability of the glass.

14.
Sci Adv ; 3(11): e1701577, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29159283

RESUMEN

The Johari-Goldstein secondary (ß) relaxations are an intrinsic feature of supercooled liquids and glasses. They are crucial to many properties of glassy materials, but the underlying mechanisms are still not established. In a model metallic glass, we study the atomic rearrangements by molecular dynamics simulations at time scales of up to microseconds. We find that the distributions of single-particle displacements exhibit multiple peaks, whose positions quantitatively match the pair distribution function. These are identified as the structural signature of cooperative string-like excitations. Furthermore, the most probable time of the string-like motions coincides with the ß-relaxation time as probed by dynamical mechanical simulations over a wide temperature range and is consistent with a theoretical model. Our results provide insights into the long-standing puzzle regarding the structural origin of ß relaxations in glassy metallic materials.

15.
Sci Rep ; 6: 33503, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27654069

RESUMEN

The understanding of the mesoscopic origin of plasticity in metallic glasses remains still an open issue. At the microscopic level, Shear Transformation Zones (STZ), composed by dozens of atoms, have been identified as the basic unit of the deformation process. Macroscopically, metallic glasses perform either homogeneous or inhomogeneous flow depending on the experimental conditions. However, the emergence of macroscopic behavior resulting from STZ interactions is still an open issue and is of great interest. In the current work we present an approach to analyze the different interaction mechanisms of STZ's by studying the statistics of the avalanches produced by a metallic glass during tensile creep deformation. We identified a crossover between different regimes of avalanches, and we analyzed the dependence of such crossover on the experimental conditions, namely stress and temperature. We interpret such crossover as a transition from 3D random STZ activity to localized 2D nano-shear bands. The experimental time at which the crossover takes place seems to depend on the overall strain and strain rate in the sample.

16.
Microsc Microanal ; 22(5): 955-963, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27681223

RESUMEN

Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

17.
J Phys Chem Lett ; 7(19): 3747-3751, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27606965

RESUMEN

Dynamical moduli, such as storage and loss moduli, characterize the viscoelasticity of materials (i.e., time-dependent elasticity) and convey important information about the relaxation processes of glasses and supercooled liquids. A fundamental question is what ultimately determines them in glassy materials. Here, for several model metallic glasses, we demonstrate that both the storage and loss moduli are uniquely determined by the most probable atomic nonaffine displacements, regardless of temperature or frequency. Moreover, the fast-moving atoms (which contribute to dynamical heterogeneity) do not contribute explicitly to the moduli. Our findings provide a physical basis for the origin of viscoelasticity in metallic glasses.

18.
Proc Natl Acad Sci U S A ; 113(26): 7053-8, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27307438

RESUMEN

To gain insight into the large toughness variability observed between metallic glasses (MGs), we examine the origin of fracture toughness through bending experiments and molecular dynamics (MD) simulations for two binary MGs: Pd82Si18 and Cu46Zr54 The bending experiments show that Pd82Si18 is considerably tougher than Cu46Zr54, and the higher toughness of Pd82Si18 is attributed to an ability to deform plastically in the absence of crack nucleation through cavitation. The MD simulations study the initial stages of cavitation in both materials and extract the critical factors controlling cavitation. We find that for the tougher Pd82Si18, cavitation is governed by chemical inhomogeneity in addition to topological structures. In contrast, no such chemical correlations are observed in the more brittle Cu46Zr54, where topological low coordination number polyhedra are still observed around the critical cavity. As such, chemical inhomogeneity leads to more difficult cavitation initiation in Pd82Si18 than in Cu46Zr54, leading to a higher toughness. The absence of chemical separation during cavitation initiation in Cu46Zr54 decreases the energy barrier for a cavitation event, leading to lower toughness.

19.
NPJ Microgravity ; 2: 1, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28649621

RESUMEN

The processing of semiconductors based on electromagnetic levitation is a challenge, because this kind of materials shows a poor electrical conductivity. Here, we report the results of measurements of the thermophysical properties obtained recently from highly doped semiconductors Si1-x Ge x under microgravity conditions in the framework of parabola flight campaigns. Due to the limited time of about 20 s of microgravity especially Ge-rich samples with low melting temperatures were investigated. The measurements were performed contactlessly by video techniques with subsequent digital image processing. Linear and volume thermal expansion coefficients were measured hereby from image data. An anomaly of volume changes near the solidus temperature is visible. Viscosity and surface tension were determined by the oscillating drop technique using optic and electronic data. It was observed that the alloying of Si into Ge increases the surface tension of the melts. The viscosity is following an Arrhenius equation and shows a crossover temperature which separates simple liquid at high temperatures from cooperative liquid at low temperatures.

20.
Proc Natl Acad Sci U S A ; 112(45): 13762-7, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26504208

RESUMEN

We present an analytic scheme to connect the fragility and viscoelasticity of metallic glasses to the effective ion-ion interaction in the metal. This is achieved by an approximation of the short-range repulsive part of the interaction, combined with nonaffine lattice dynamics to obtain analytical expressions for the shear modulus, viscosity, and fragility in terms of the ion-ion interaction. By fitting the theoretical model to experimental data, we are able to link the steepness of the interionic repulsion to the Thomas-Fermi screened Coulomb repulsion and to the Born-Mayer valence electron overlap repulsion for various alloys. The result is a simple closed-form expression for the fragility of the supercooled liquid metal in terms of few crucial atomic-scale interaction and anharmonicity parameters. In particular, a linear relationship is found between the fragility and the energy scales of both the screened Coulomb and the electron overlap repulsions. This relationship opens up opportunities to fabricate alloys with tailored thermoelasticity and fragility by rationally tuning the chemical composition of the alloy according to general principles. The analysis presented here brings a new way of looking at the link between the outer shell electronic structure of metals and metalloids and the viscoelasticity and fragility thereof.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...