Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1337621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405598

RESUMEN

Mast cells (MCs) are located in the meninges of the central nervous system (CNS), where they play key roles in the immune response. MC-deficient mice are advantageous in delineating the role of MCs in the immune response in vivo. In this study, we illustrate that a mutation in microphthalmia-associated transcription factor (Mitf) affects meningeal MC number in a dosage-dependent manner. C57BL/6J Mitf null mice lack meningeal MCs completely, whereas heterozygous mice have on average 25% fewer MCs. Mitf heterozygous mice might be a valuable tool to study the role of MCs in the meninges.

2.
iScience ; 26(12): 108364, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025786

RESUMEN

Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.

3.
Lancet Respir Med ; 10(3): 278-288, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150610

RESUMEN

BACKGROUND: Convalescent plasma has been proposed as an early treatment to interrupt the progression of early COVID-19 to severe disease, but there is little definitive evidence. We aimed to assess whether early treatment with convalescent plasma reduces the risk of hospitalisation and reduces SARS-CoV-2 viral load among outpatients with COVID-19. METHODS: We did a multicentre, double-blind, randomised, placebo-controlled trial in four health-care centres in Catalonia, Spain. Adult outpatients aged 50 years or older with the onset of mild COVID-19 symptoms 7 days or less before randomisation were eligible for enrolment. Participants were randomly assigned (1:1) to receive one intravenous infusion of either 250-300 mL of ABO-compatible high anti-SARS-CoV-2 IgG titres (EUROIMMUN ratio ≥6) methylene blue-treated convalescent plasma (experimental group) or 250 mL of sterile 0·9% saline solution (control). Randomisation was done with the use of a central web-based system with concealment of the trial group assignment and no stratification. To preserve masking, we used opaque tubular bags that covered the investigational product and the infusion catheter. The coprimary endpoints were the incidence of hospitalisation within 28 days from baseline and the mean change in viral load (in log10 copies per mL) in nasopharyngeal swabs from baseline to day 7. The trial was stopped early following a data safety monitoring board recommendation because more than 85% of the target population had received a COVID-19 vaccine. Primary efficacy analyses were done in the intention-to-treat population, safety was assessed in all patients who received the investigational product. This study is registered with ClinicalTrials.gov, NCT04621123. FINDINGS: Between Nov 10, 2020, and July 28, 2021, we assessed 909 patients with confirmed COVID-19 for inclusion in the trial, 376 of whom were eligible and were randomly assigned to treatment (convalescent plasma n=188 [serum antibody-negative n=160]; placebo n=188 [serum antibody-negative n=166]). Median age was 56 years (IQR 52-62) and the mean symptom duration was 4·4 days (SD 1·4) before random assignment. In the intention-to-treat population, hospitalisation within 28 days from baseline occurred in 22 (12%) participants who received convalescent plasma versus 21 (11%) who received placebo (relative risk 1·05 [95% CI 0·78 to 1·41]). The mean change in viral load from baseline to day 7 was -2·41 log10 copies per mL (SD 1·32) with convalescent plasma and -2·32 log10 copies per mL (1·43) with placebo (crude difference -0·10 log10 copies per mL [95% CI -0·35 to 0·15]). One participant with mild COVID-19 developed a thromboembolic event 7 days after convalescent plasma infusion, which was reported as a serious adverse event possibly related to COVID-19 or to the experimental intervention. INTERPRETATION: Methylene blue-treated convalescent plasma did not prevent progression from mild to severe illness and did not reduce viral load in outpatients with COVID-19. Therefore, formal recommendations to support the use of convalescent plasma in outpatients with COVID-19 cannot be concluded. FUNDING: Grifols, Crowdfunding campaign YoMeCorono.


Asunto(s)
COVID-19 , Azul de Metileno , Adulto , COVID-19/terapia , Vacunas contra la COVID-19 , Método Doble Ciego , Humanos , Inmunización Pasiva , Persona de Mediana Edad , Pacientes Ambulatorios , SARS-CoV-2 , Resultado del Tratamiento , Sueroterapia para COVID-19
4.
Cortex ; 147: 58-71, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35021126

RESUMEN

Endogenous brain processes play a paramount role in shaping up perceptual phenomenology. This is illustrated by the alternations experienced by humans (and other animals) when watching perceptually ambiguous, static images. We hypothesised that endogenous alpha fluctuations in the visual cortex pace the accumulation of sensory information leading to perceptual outcomes. Here, we addressed this hypothesis using binocular rivalry combined with visual entrainment and electroencephalography in humans (64 female, 53 male). The results revealed a correlation between the individual frequency of alpha oscillations in the occipital cortex and perceptual alternation rates experienced during binocular rivalry. In subsequent experiments we show that regulating endogenous brain activity via rhythmic entrainment produced corresponding changes in perceptual alternation rate. These changes were observed only in the alpha range but not at lower entrainment frequencies, and were much reduced when using arrhythmic stimulation. Additionally, entraining at frequencies above the alpha range did not result in speeding up perceptual alternation rates. Overall, these findings support the notion that visual information is accumulated via alpha cycles to promote the emergence of conscious perceptual representations. We suggest that models of binocular rivalry incorporating posterior alpha as a pacemaker can provide an important advance in the comprehension of the dynamics of visual awareness.


Asunto(s)
Visión Binocular , Percepción Visual , Concienciación , Encéfalo/fisiología , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Visión Binocular/fisiología , Percepción Visual/fisiología
5.
Pain ; 163(8): e927-e941, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34961757

RESUMEN

ABSTRACT: Prdm12 is a conserved epigenetic transcriptional regulator that displays restricted expression in nociceptors of the developing peripheral nervous system. In mice, Prdm12 is required for the development of the entire nociceptive lineage. In humans, PRDM12 mutations cause congenital insensitivity to pain, likely because of the loss of nociceptors. Prdm12 expression is maintained in mature nociceptors suggesting a yet-to-be explored functional role in adults. Using Prdm12 inducible conditional knockout mouse models, we report that in adult nociceptors Prdm12 is no longer required for cell survival but continues to play a role in the transcriptional control of a network of genes, many of them encoding ion channels and receptors. We found that disruption of Prdm12 alters the excitability of dorsal root ganglion neurons in culture. Phenotypically, we observed that mice lacking Prdm12 exhibit normal responses to thermal and mechanical nociceptive stimuli but a reduced response to capsaicin and hypersensitivity to formalin-induced inflammatory pain. Together, our data indicate that Prdm12 regulates pain-related behavior in a complex way by modulating gene expression in adult nociceptors and controlling their excitability. The results encourage further studies to assess the potential of Prdm12 as a target for analgesic development.


Asunto(s)
Proteínas Portadoras , Ganglios Espinales , Proteínas del Tejido Nervioso , Nociceptores , Animales , Proteínas Portadoras/genética , Ganglios Espinales/metabolismo , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Nociceptores/fisiología , Dolor/genética , Dolor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...