Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38820122

RESUMEN

RATIONALE: Quantitative interstitial abnormalities (QIA) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIA and its role in the QIA-outcome relationship is unknown. OBJECTIVES: To quantify radiographic pulmonary vasculopathy in quantitative interstitial abnormalities (QIA) and determine if this vasculopathy mediates the QIA-outcome relationship. METHODS: Ever-smokers with QIA, outcome, and pulmonary vascular mediator data were identified from the COPDGene cohort. CT-based vascular mediators were: right ventricle-to-left ventricle ratio (RV/LV), pulmonary artery-to-aorta ratio (PA/Ao), and pre-acinar intraparenchymal arterial dilation (PA volume 5-20mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were: six-minute walk distance (6MWD) and modified Medical Council Research Council (mMRC) Dyspnea score ≥2. Adjusted causal mediation analyses were used to determine if the pulmonary vasculature mediated the QIA effect on outcomes. Associations of pre-acinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. MAIN RESULTS: Among 8,200 participants, QIA burden correlated positively with vascular damage measures including pre-acinar arterial dilation. Pre-acinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6MWD (56.2-100%, p<0.001). PA/Ao was a weak mediator and RV/LV was a suppressor. Similar results were observed in the QIA-mMRC relationship. Pre-acinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels including angiopoietin-2 and NT-proBNP. CONCLUSIONS: Parenchymal quantitative interstitial abnormalities (QIA) deleteriously impact outcomes primarily through pulmonary vasculopathy. Pre-acinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIA.

2.
Radiology ; 311(1): e231801, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687222

RESUMEN

Background Acute respiratory disease (ARD) events are often thought to be airway-disease related, but some may be related to quantitative interstitial abnormalities (QIAs), which are subtle parenchymal abnormalities on CT scans associated with morbidity and mortality in individuals with a smoking history. Purpose To determine whether QIA progression at CT is associated with ARD and severe ARD events in individuals with a history of smoking. Materials and Methods This secondary analysis of a prospective study included individuals with a 10 pack-years or greater smoking history recruited from multiple centers between November 2007 and July 2017. QIA progression was assessed between baseline (visit 1) and 5-year follow-up (visit 2) chest CT scans. Episodes of ARD were defined as increased cough or dyspnea lasting 48 hours and requiring antibiotics or corticosteroids, whereas severe ARD episodes were those requiring an emergency room visit or hospitalization. Episodes were recorded via questionnaires completed every 3 to 6 months. Multivariable logistic regression and zero-inflated negative binomial regression models adjusted for comorbidities (eg, emphysema, small airway disease) were used to assess the association between QIA progression and episodes between visits 1 and 2 (intercurrent) and after visit 2 (subsequent). Results A total of 3972 participants (mean age at baseline, 60.7 years ± 8.6 [SD]; 2120 [53.4%] women) were included. Annual percentage QIA progression was associated with increased odds of one or more intercurrent (odds ratio [OR] = 1.29 [95% CI: 1.06, 1.56]; P = .01) and subsequent (OR = 1.26 [95% CI: 1.05, 1.52]; P = .02) severe ARD events. Participants in the highest quartile of QIA progression (≥1.2%) had more frequent intercurrent ARD (incidence rate ratio [IRR] = 1.46 [95% CI: 1.14, 1.86]; P = .003) and severe ARD (IRR = 1.79 [95% CI: 1.18, 2.73]; P = .006) events than those in the lowest quartile (≤-1.7%). Conclusion QIA progression was independently associated with higher odds of severe ARD events during and after radiographic progression, with higher frequency of intercurrent severe events in those with faster progression. Clinical trial registration no. NCT00608764 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Little in this issue.


Asunto(s)
Progresión de la Enfermedad , Fumar , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Tomografía Computarizada por Rayos X/métodos , Estudios Prospectivos , Persona de Mediana Edad , Fumar/efectos adversos , Enfermedad Aguda , Anciano , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Pulmón/diagnóstico por imagen
3.
BMJ Open Respir Res ; 11(1)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485250

RESUMEN

INTRODUCTION/RATIONALE: Protein biomarkers may help enable the prediction of incident interstitial features on chest CT. METHODS: We identified which protein biomarkers in a cohort of smokers (COPDGene) differed between those with and without objectively measured interstitial features at baseline using a univariate screen (t-test false discovery rate, FDR p<0.001), and which of those were associated with interstitial features longitudinally (multivariable mixed effects model FDR p<0.05). To predict incident interstitial features, we trained four random forest classifiers in a two-thirds random subset of COPDGene: (1) imaging and demographic information, (2) univariate screen biomarkers, (3) multivariable confirmation biomarkers and (4) multivariable confirmation biomarkers available in a separate testing cohort (Pittsburgh Lung Screening Study (PLuSS)). We evaluated classifier performance in the remaining one-third of COPDGene, and, for the final model, also in PLuSS. RESULTS: In COPDGene, 1305 biomarkers were available and 20 differed between those with and without interstitial features at baseline. Of these, 11 were associated with feature progression over a mean of 5.5 years of follow-up, and of these 4 were available in PLuSS, (angiopoietin-2, matrix metalloproteinase 7, macrophage inflammatory protein 1 alpha) over a mean of 8.8 years of follow-up. The area under the curve (AUC) of classifiers using demographics and imaging features in COPDGene and PLuSS were 0.69 and 0.59, respectively. In COPDGene, the AUC of the univariate screen classifier was 0.78 and of the multivariable confirmation classifier was 0.76. The AUC of the final classifier in COPDGene was 0.75 and in PLuSS was 0.76. The outcome for all of the models was the development of incident interstitial features. CONCLUSIONS: Multiple novel and previously identified proteomic biomarkers are associated with interstitial features on chest CT and may enable the prediction of incident interstitial diseases such as idiopathic pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteómica , Humanos , Estudios Retrospectivos , Biomarcadores , Tomografía Computarizada por Rayos X
4.
Am J Respir Crit Care Med ; 209(9): 1091-1100, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285918

RESUMEN

Rationale: Quantitative interstitial abnormalities (QIAs) are early measures of lung injury automatically detected on chest computed tomography scans. QIAs are associated with impaired respiratory health and share features with advanced lung diseases, but their biological underpinnings are not well understood. Objectives: To identify novel protein biomarkers of QIAs using high-throughput plasma proteomic panels within two multicenter cohorts. Methods: We measured the plasma proteomics of 4,383 participants in an older, ever-smoker cohort (COPDGene [Genetic Epidemiology of Chronic Obstructive Pulmonary Disease]) and 2,925 participants in a younger population cohort (CARDIA [Coronary Artery Disease Risk in Young Adults]) using the SomaLogic SomaScan assays. We measured QIAs using a local density histogram method. We assessed the associations between proteomic biomarker concentrations and QIAs using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, and study center (Benjamini-Hochberg false discovery rate-corrected P ⩽ 0.05). Measurements and Main Results: In total, 852 proteins were significantly associated with QIAs in COPDGene and 185 in CARDIA. Of the 144 proteins that overlapped between COPDGene and CARDIA, all but one shared directionalities and magnitudes. These proteins were enriched for 49 Gene Ontology pathways, including biological processes in inflammatory response, cell adhesion, immune response, ERK1/2 regulation, and signaling; cellular components in extracellular regions; and molecular functions including calcium ion and heparin binding. Conclusions: We identified the proteomic biomarkers of QIAs in an older, smoking population with a higher prevalence of pulmonary disease and in a younger, healthier community cohort. These proteomics features may be markers of early precursors of advanced lung diseases.


Asunto(s)
Biomarcadores , Proteómica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Femenino , Masculino , Biomarcadores/sangre , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/sangre , Adulto , Anciano , Estudios de Cohortes , Tomografía Computarizada por Rayos X , Enfermedades Pulmonares Intersticiales/genética , Adulto Joven
5.
Respir Res ; 24(1): 265, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925418

RESUMEN

BACKGROUND: Quantitative interstitial abnormalities (QIA) are an automated computed tomography (CT) finding of early parenchymal lung disease, associated with worse lung function, reduced exercise capacity, increased respiratory symptoms, and death. The metabolomic perturbations associated with QIA are not well known. We sought to identify plasma metabolites associated with QIA in smokers. We also sought to identify shared and differentiating metabolomics features between QIA and emphysema, another smoking-related advanced radiographic abnormality. METHODS: In 928 former and current smokers in the Genetic Epidemiology of COPD cohort, we measured QIA and emphysema using an automated local density histogram method and generated metabolite profiles from plasma samples using liquid chromatography-mass spectrometry (Metabolon). We assessed the associations between metabolite levels and QIA using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, pack-years, and inhaled corticosteroid use, at a Benjamini-Hochberg False Discovery Rate p-value of ≤ 0.05. Using multinomial regression models adjusted for these covariates, we assessed the associations between metabolite levels and the following CT phenotypes: QIA-predominant, emphysema-predominant, combined-predominant, and neither- predominant. Pathway enrichment analyses were performed using MetaboAnalyst. RESULTS: We found 85 metabolites significantly associated with QIA, with overrepresentation of the nicotinate and nicotinamide, histidine, starch and sucrose, pyrimidine, phosphatidylcholine, lysophospholipid, and sphingomyelin pathways. These included metabolites involved in inflammation and immune response, extracellular matrix remodeling, surfactant, and muscle cachexia. There were 75 metabolites significantly different between QIA-predominant and emphysema-predominant phenotypes, with overrepresentation of the phosphatidylethanolamine, nicotinate and nicotinamide, aminoacyl-tRNA, arginine, proline, alanine, aspartate, and glutamate pathways. CONCLUSIONS: Metabolomic correlates may lend insight to the biologic perturbations and pathways that underlie clinically meaningful quantitative CT measurements like QIA in smokers.


Asunto(s)
Enfisema , Niacina , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Fumadores , Pulmón , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/epidemiología , Niacinamida , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
6.
Ann Intern Med ; 176(10): 1340-1348, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782931

RESUMEN

BACKGROUND: Bronchiectasis in adults with chronic obstructive pulmonary disease (COPD) is associated with greater mortality. However, whether suspected bronchiectasis-defined as incidental bronchiectasis on computed tomography (CT) images plus clinical manifestation-is associated with increased mortality in adults with a history of smoking with normal spirometry and preserved ratio impaired spirometry (PRISm) is unknown. OBJECTIVE: To determine the association between suspected bronchiectasis and mortality in adults with normal spirometry, PRISm, and obstructive spirometry. DESIGN: Prospective, observational cohort. SETTING: The COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) study. PARTICIPANTS: 7662 non-Hispanic Black or White adults, aged 45 to 80 years, with 10 or more pack-years of smoking history. Participants who were former and current smokers were stratified into normal spirometry (n = 3277), PRISm (n = 986), and obstructive spirometry (n = 3399). MEASUREMENTS: Bronchiectasis identified by CT was ascertained using artificial intelligence-based measurements of an airway-to-artery ratio (AAR) greater than 1 (AAR >1), a measure of bronchial dilatation. The primary outcome of "suspected bronchiectasis" was defined as an AAR >1 of greater than 1% plus 2 of the following: cough, phlegm, dyspnea, and history of 2 or more exacerbations. RESULTS: Among the 7662 participants (mean age, 60 years; 52% women), 1352 (17.6%) had suspected bronchiectasis. During a median follow-up of 11 years, 2095 (27.3%) died. Ten-year mortality risk was higher in participants with suspected bronchiectasis, compared with those without suspected bronchiectasis (normal spirometry: difference in mortality probability [Pr], 0.15 [95% CI, 0.09 to 0.21]; PRISm: Pr, 0.07 [CI, -0.003 to 0.15]; obstructive spirometry: Pr, 0.06 [CI, 0.03 to 0.09]). When only CT was used to identify bronchiectasis, the differences were attenuated in the normal spirometry (Pr, 0.04 [CI, -0.001 to 0.08]). LIMITATIONS: Only 2 racial groups were studied. Only 1 measurement was used to define bronchiectasis on CT. Symptoms of suspected bronchiectasis were nonspecific. CONCLUSION: Suspected bronchiectasis was associated with a heightened risk for mortality in adults with normal and obstructive spirometry. PRIMARY FUNDING SOURCE: National Heart, Lung, and Blood Institute.


Asunto(s)
Bronquiectasia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Adulto , Femenino , Persona de Mediana Edad , Masculino , Estudios de Cohortes , Estudios Prospectivos , Inteligencia Artificial , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Pulmón/diagnóstico por imagen , Fumar/efectos adversos , Bronquiectasia/complicaciones , Espirometría/métodos , Volumen Espiratorio Forzado
7.
Am J Cardiol ; 205: 182-189, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37604065

RESUMEN

Pulmonary vascular abnormalities, quantified from computed tomography scans, have frequently been observed in patients with pulmonary diseases. However, little is known about pulmonary vascular changes in patients with cardiac disease. Thus, we aimed to examine the cardiopulmonary relation in patients with atrial fibrillation (AF) by comparing pulmonary vascular volume (PVV) to echocardiographic measures and AF severity. A total of 742 patients (median age 63 years, 70% men) who underwent ablation for AF were included. Preprocedural cardiac computed tomography was used to measure the total and small-vessel PVV, along with the pulmonary artery to aorta ratio and the degree of emphysema. The association between PVV and echocardiographic parameters was evaluated using a multivariable linear regression analysis. Lower total and small-vessel PVV were associated with more impaired measures of cardiac structure and function, including but not limited to left ventricular ejection fraction and peak atrial longitudinal strain. Patients with reduced total and small-vessel PVV had higher odds of having persistent AF than paroxysmal AF in the unadjusted logistic regression analyses. However, after clinical and echocardiographic adjustments, only reduced small-vessel PVV remained independently associated with persistent AF (odds ratio 1.90, 95% confidence interval 1.26 to 2.87, p = 0.002). In conclusion, pulmonary vascular remodeling is associated with persistent AF and with more impaired measures of cardiac structure and function, providing further insights into heart-lung interactions in this patient group.


Asunto(s)
Fibrilación Atrial , Masculino , Humanos , Persona de Mediana Edad , Femenino , Fibrilación Atrial/diagnóstico por imagen , Volumen Sistólico , Función Ventricular Izquierda , Ecocardiografía , Atrios Cardíacos/diagnóstico por imagen
8.
JAMA ; 329(21): 1832-1839, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37210745

RESUMEN

Importance: Airway mucus plugs are common in patients with chronic obstructive pulmonary disease (COPD); however, the association of airway mucus plugging and mortality in patients with COPD is unknown. Objective: To determine whether airway mucus plugs identified on chest computed tomography (CT) were associated with increased all-cause mortality. Design, Setting, and Participants: Observational retrospective analysis of prospectively collected data of patients with a diagnosis of COPD in the Genetic Epidemiology of COPD cohort. Participants were non-Hispanic Black or White individuals, aged 45 to 80 years, who smoked at least 10 pack-years. Participants were enrolled at 21 centers across the US between November 2007 and April 2011 and were followed up through August 31, 2022. Exposures: Mucus plugs that completely occluded airways on chest CT scans, identified in medium- to large-sized airways (ie, approximately 2- to 10-mm lumen diameter) and categorized as affecting 0, 1 to 2, or 3 or more lung segments. Main Outcomes and Measures: The primary outcome was all-cause mortality, assessed with proportional hazard regression analysis. Models were adjusted for age, sex, race and ethnicity, body mass index, pack-years smoked, current smoking status, forced expiratory volume in the first second of expiration, and CT measures of emphysema and airway disease. Results: Among the 4483 participants with COPD, 4363 were included in the primary analysis (median age, 63 years [IQR, 57-70 years]; 44% were women). A total of 2585 (59.3%), 953 (21.8%), and 825 (18.9%) participants had mucus plugs in 0, 1 to 2, and 3 or more lung segments, respectively. During a median 9.5-year follow-up, 1769 participants (40.6%) died. The mortality rates were 34.0% (95% CI, 32.2%-35.8%), 46.7% (95% CI, 43.5%-49.9%), and 54.1% (95% CI, 50.7%-57.4%) in participants who had mucus plugs in 0, 1 to 2, and 3 or more lung segments, respectively. The presence of mucus plugs in 1 to 2 vs 0 and 3 or more vs 0 lung segments was associated with an adjusted hazard ratio of death of 1.15 (95% CI, 1.02-1.29) and 1.24 (95% CI, 1.10-1.41), respectively. Conclusions and Relevance: In participants with COPD, the presence of mucus plugs that obstructed medium- to large-sized airways was associated with higher all-cause mortality compared with patients without mucus plugging on chest CT scans.


Asunto(s)
Obstrucción de las Vías Aéreas , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obstrucción de las Vías Aéreas/diagnóstico por imagen , Obstrucción de las Vías Aéreas/etiología , Obstrucción de las Vías Aéreas/mortalidad , Volumen Espiratorio Forzado , Pulmón , Moco , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Fumar Cigarrillos/efectos adversos
9.
Radiology ; 307(1): e221109, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36511808

RESUMEN

Background CT is the standard method used to assess bronchiectasis. A higher airway-to-artery diameter ratio (AAR) is typically used to identify enlarged bronchi and bronchiectasis; however, current imaging methods are limited in assessing the extent of this metric in CT scans. Purpose To determine the extent of AARs using an artificial intelligence-based chest CT and assess the association of AARs with exacerbations over time. Materials and Methods In a secondary analysis of ever-smokers from the prospective, observational, multicenter COPDGene study, AARs were quantified using an artificial intelligence tool. The percentage of airways with AAR greater than 1 (a measure of airway dilatation) in each participant on chest CT scans was determined. Pulmonary exacerbations were prospectively determined through biannual follow-up (from July 2009 to September 2021). Multivariable zero-inflated regression models were used to assess the association between the percentage of airways with AAR greater than 1 and the total number of pulmonary exacerbations over follow-up. Covariates included demographics, lung function, and conventional CT parameters. Results Among 4192 participants (median age, 59 years; IQR, 52-67 years; 1878 men [45%]), 1834 had chronic obstructive pulmonary disease (COPD). During a 10-year follow-up and in adjusted models, the percentage of airways with AARs greater than 1 (quartile 4 vs 1) was associated with a higher total number of exacerbations (risk ratio [RR], 1.08; 95% CI: 1.02, 1.15; P = .01). In participants meeting clinical and imaging criteria of bronchiectasis (ie, clinical manifestations with ≥3% of AARs >1) versus those who did not, the RR was 1.37 (95% CI: 1.31, 1.43; P < .001). Among participants with COPD, the corresponding RRs were 1.10 (95% CI: 1.02, 1.18; P = .02) and 1.32 (95% CI: 1.26, 1.39; P < .001), respectively. Conclusion In ever-smokers with chronic obstructive pulmonary disease, artificial intelligence-based CT measures of bronchiectasis were associated with more exacerbations over time. Clinical trial registration no. NCT00608764 © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Schiebler and Seo in this issue.


Asunto(s)
Inteligencia Artificial , Bronquiectasia , Enfermedad Pulmonar Obstructiva Crónica , Tomografía Computarizada de Emisión , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Bronquios/irrigación sanguínea , Bronquios/diagnóstico por imagen , Bronquios/fisiopatología , Bronquiectasia/complicaciones , Bronquiectasia/diagnóstico por imagen , Bronquiectasia/fisiopatología , Estudios de Seguimiento , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/genética , Análisis de Regresión , Fumadores , Tomografía Computarizada de Emisión/métodos , Estudios de Cohortes
10.
Chest ; 163(1): 164-175, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35780812

RESUMEN

BACKGROUND: The risk factors and clinical outcomes of quantitative interstitial abnormality progression over time have not been characterized. RESEARCH QUESTIONS: What are the associations of quantitative interstitial abnormality progression with lung function, exercise capacity, and mortality? What are the demographic and genetic risk factors for quantitative interstitial abnormality progression? STUDY DESIGN AND METHODS: Quantitative interstitial abnormality progression between visits 1 and 2 was assessed from 4,635 participants in the Genetic Epidemiology of COPD (COPDGene) cohort and 1,307 participants in the Pittsburgh Lung Screening Study (PLuSS) cohort. We used multivariable linear regression to determine the risk factors for progression and the longitudinal associations between progression and FVC and 6-min walk distance, and Cox regression models for the association with mortality. RESULTS: Age at enrollment, female sex, current smoking status, and the MUC5B minor allele were associated with quantitative interstitial abnormality progression. Each percent annual increase in quantitative interstitial abnormalities was associated with annual declines in FVC (COPDGene: 8.5 mL/y; 95% CI, 4.7-12.4 mL/y; P < .001; PLuSS: 9.5 mL/y; 95% CI, 3.7-15.4 mL/y; P = .001) and 6-min walk distance, and increased mortality (COPDGene: hazard ratio, 1.69; 95% CI, 1.34-2.12; P < .001; PLuSS: hazard ratio, 1.28; 95% CI, 1.10-1.49; P = .001). INTERPRETATION: The objective, longitudinal measurement of quantitative interstitial abnormalities may help identify people at greatest risk for adverse events and most likely to benefit from early intervention.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Tomografía Computarizada por Rayos X , Humanos , Femenino , Epidemiología Molecular , Modelos de Riesgos Proporcionales , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética
11.
Chest ; 161(4): 960-970, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34785234

RESUMEN

BACKGROUND: Body composition measures, specifically low weight or reduced muscle mass, are associated with mortality in COPD, but the effect of longitudinal body composition changes is undefined. RESEARCH QUESTION: Is the longitudinal loss of fat-free mass (FFM) associated with increased mortality, including in those with initially normal or elevated body composition metrics? STUDY DESIGN AND METHODS: Participants with complete data for at least one visit in the COPDGene study (n = 9,268) and the ECLIPSE study (n = 1,760) were included and monitored for 12 and 8 years, respectively. Pectoralis muscle area (PMA) was derived from thoracic CT scans and used as a proxy for FFM. A longitudinal mixed submodel for PMA and a Cox proportional hazards submodel for survival were fitted on a joint distribution, using a shared random intercept parameter and Markov chain Monte Carlo parameter estimation. RESULTS: Both cohorts demonstrated a left-shifted distribution of baseline FFM, not reflected in BMI, and an increase in all-cause mortality risk associated with longitudinal loss of PMA. For each 1-cm2 PMA loss, mortality increased 3.1% (95% CI, 2.4%-3.7%; P < .001) in COPDGene, and 2.4% (95% CI, 0.9%-4.0%; P < .001) in ECLIPSE. Increased mortality risk was independent of enrollment values for BMI and disease severity [BODE (body mass, airflow obstruction, dyspnea, and exercise capacity) index quartiles] and was significant even in participants with initially greater than average PMA. INTERPRETATION: Longitudinal loss of PMA is associated with increased all-cause mortality, regardless of BMI or initial muscle mass. Consideration of novel screening tests and further research into mechanisms contributing to muscle decline may improve risk stratification and identify novel therapeutic targets in ever smokers.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Fumadores , Composición Corporal , Índice de Masa Corporal , Humanos , Estudios Longitudinales , Pulmón , Músculos Pectorales , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
12.
J Thorac Dis ; 13(7): 4207-4216, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34422349

RESUMEN

BACKGROUND: CT screening for lung cancer results in a significant mortality reduction but is complicated by invasive procedures performed for evaluation of the many detected benign nodules. The purpose of this study was to evaluate measures of nodule location within the lung as predictors of malignancy. METHODS: We analyzed images and data from 3,483 participants in the National Lung Screening Trial (NLST). All nodules (4-20 mm) were characterized by 3D geospatial location using a Cartesian coordinate system and evaluated in logistic regression analysis. Model development and probability cutpoint selection was performed in the NLST testing set. The Geospatial test was then validated in the NLST testing set, and subsequently replicated in a new cohort of 147 participants from The Detection of Early Lung Cancer Among Military Personnel (DECAMP) Consortium. RESULTS: The Geospatial Test, consisting of the superior-inferior distance (Z distance), nodule diameter, and radial distance (carina to nodule) performed well in both the NLST validation set (AUC 0.85) and the DECAMP replication cohort (AUC 0.75). A negative Geospatial Test resulted in a less than 2% risk of cancer across all nodule diameters. The Geospatial Test correctly reclassified 19.7% of indeterminate nodules with a diameter over 6mm as benign, while only incorrectly classifying 1% of cancerous nodules as benign. In contrast, the parsimonious Brock Model applied to the same group of nodules correctly reclassified 64.5% of indeterminate nodules as benign but resulted in misclassification of a cancer as benign in 18.2% of the cases. Applying the Geospatial test would result in reducing invasive procedures performed for benign lesions by 11.3% with a low rate of misclassification (1.3%). In contrast, the Brock model applied to the same group of patients results in decreasing invasive procedures for benign lesion by 39.0% but misclassifying 21.1% of cancers as benign. CONCLUSIONS: Utilizing information about geospatial location within the lung improves risk assessment for indeterminate lung nodules and may reduce unnecessary procedures. TRIAL REGISTRATION: NCT00047385, NCT01785342.

13.
Chest ; 160(6): 2220-2231, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34270966

RESUMEN

BACKGROUND: Pulmonary hypertension is a heterogeneous disease, and a significant portion of patients at risk for it have CT imaging available. Advanced automated processing techniques could be leveraged for early detection, screening, and development of quantitative phenotypes. Pruning and vascular tortuosity have been previously described in pulmonary arterial hypertension (PAH), but the extent of these phenomena in arterial vs venous pulmonary vasculature and in exercise pulmonary hypertension (ePH) have not been described. RESEARCH QUESTION: What are the arterial and venous manifestations of pruning and vascular tortuosity using CT imaging in PAH, and do they also occur in ePH? STUDY DESIGN AND METHODS: A cohort of patients with PAH and ePH and control subjects with available CT angiograms were retrospectively identified to examine the differential arterial and venous presence of pruning and tortuosity in patients with precapillary pulmonary hypertension not confounded by lung or thromboembolic disease. The pulmonary vasculature was reconstructed, and an artificial intelligence method was used to separate arteries and veins and to compute arterial and venous vascular volumes and tortuosity. RESULTS: A total of 42 patients with PAH, 12 patients with ePH, and 37 control subjects were identified. There was relatively lower (median [interquartile range]) arterial small vessel volume in subjects with PAH (PAH 14.7 [11.7-16.5; P < .0001]) vs control subjects (16.9 [15.6-19.2]) and venous small vessel volume in subjects with PAH and ePH (PAH 8.0 [6.5-9.6; P < .0001]; ePH, 7.8 [7.5-11.4; P = .004]) vs control subjects (11.5 [10.6-12.2]). Higher large arterial volume, however, was only observed in the pulmonary arteries (PAH 17.1 [13.6-23.4; P < .0001] vs control subjects 11.4 [8.1-15.4]). Similarly, tortuosity was higher in the pulmonary arteries in the PAH group (PAH 3.5 [3.3-3.6; P = .0002] vs control 3.2 [3.2-3.3]). INTERPRETATION: Lower small distal pulmonary vascular volume, higher proximal arterial volume, and higher arterial tortuosity were observed in PAH. These can be quantified by using automated techniques from clinically acquired CT scans of patients with ePH and resting PAH.


Asunto(s)
Hipertensión Arterial Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/fisiopatología , Pruebas de Función Respiratoria , Estudios Retrospectivos
14.
Thorax ; 76(6): 554-560, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33574123

RESUMEN

OBJECTIVES: Muscle wasting is a recognised extra-pulmonary complication in chronic obstructive pulmonary disease and has been associated with increased risk of death. Acute respiratory exacerbations are associated with reduction of muscle function, but there is a paucity of data on their long-term effect. This study explores the relationship between acute respiratory exacerbations and long-term muscle loss using serial measurements of CT derived pectoralis muscle area (PMA). DESIGN AND SETTING: Participants were included from two prospective, longitudinal, observational, multicentre cohorts of ever-smokers with at least 10 pack-year history. PARTICIPANTS: The primary analysis included 1332 (of 2501) participants from Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) and 4384 (of 10 198) participants from Genetic Epidemiology of COPD (COPDGene) who had complete data from their baseline and follow-up visits. INTERVENTIONS: PMA was measured on chest CT scans at two timepoints. Self-reported exacerbation data were collected from participants in both studies through the use of periodic longitudinal surveys. MAIN OUTCOME MEASURES: Age-related and excess muscle loss over time. RESULTS: Age, sex, race and body mass index were associated with baseline PMA. Participants experienced age-related decline at the upper end of reported normal ranges. In ECLIPSE, the exacerbation rate over time was associated with an excess muscle area loss of 1.3% (95% CI 0.6 to 1.9, p<0.001) over 3 years and in COPDGene with an excess muscle area loss of 2.1% (95% CI 1.2 to 2.8, p<0.001) over 5 years. Excess muscle area decline was absent in 273 individuals who participated in pulmonary rehabilitation. CONCLUSIONS: Exacerbations are associated with accelerated skeletal muscle loss. Each annual exacerbation was associated with the equivalent of 6 months of age-expected decline in muscle mass. Ameliorating exacerbation-associated muscle loss represents an important therapeutic target.


Asunto(s)
Atrofia Muscular/etiología , Vigilancia de la Población , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Calidad de Vida , Fumar/efectos adversos , Anciano , Progresión de la Enfermedad , Femenino , Volumen Espiratorio Forzado/fisiología , Humanos , Masculino , Persona de Mediana Edad , Atrofia Muscular/fisiopatología , Pronóstico , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X
15.
Chest ; 159(2): 549-563, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32946850

RESUMEN

BACKGROUND: Chronic tobacco smoke exposure results in a broad range of lung pathologies including emphysema, airway disease and parenchymal fibrosis as well as a multitude of extra-pulmonary comorbidities. Prior work using CT imaging has identified several clinically relevant subgroups of smoking related lung disease, but these investigations have generally lacked organ specific molecular correlates. RESEARCH QUESTION: Can CT imaging be used to identify clinical phenotypes of smoking related lung disease that have specific bronchial epithelial gene expression patterns to better understand disease pathogenesis? STUDY DESIGN AND METHODS: Using K-means clustering, we clustered participants from the COPDGene study (n = 5,273) based on CT imaging characteristics and then evaluated their clinical phenotypes. These clusters were replicated in the Detection of Early Lung Cancer Among Military Personnel (DECAMP) cohort (n = 360), and were further characterized using bronchial epithelial gene expression. RESULTS: Three clusters (preserved, interstitial predominant and emphysema predominant) were identified. Compared to the preserved cluster, the interstitial and emphysema clusters had worse lung function, exercise capacity and quality of life. In longitudinal follow-up, individuals from the emphysema group had greater declines in exercise capacity and lung function, more emphysema, more exacerbations, and higher mortality. Similarly, genes involved in inflammatory pathways (tumor necrosis factor-α, interferon-ß) are more highly expressed in bronchial epithelial cells from individuals in the emphysema cluster, while genes associated with T-cell related biology are decreased in these samples. Samples from individuals in the interstitial cluster generally had intermediate levels of expression of these genes. INTERPRETATION: Using quantitative CT imaging, we identified three groups of individuals in older ever-smokers that replicate in two cohorts. Airway gene expression differences between the three groups suggests increased levels of inflammation in the most severe clinical phenotype, possibly mediated by the tumor necrosis factor-α and interferon-ß pathways. CLINICAL TRIAL REGISTRATION: COPDGene (NCT00608764), DECAMP-1 (NCT01785342), DECAMP-2 (NCT02504697).


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Fumar/efectos adversos , Tomografía Computarizada por Rayos X , Centros Médicos Académicos , Anciano , Femenino , Hospitales de Veteranos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Estados Unidos/epidemiología
16.
Chest ; 156(6): 1149-1159, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31233744

RESUMEN

BACKGROUND: Tobacco smoke exposure is associated with emphysema and pulmonary fibrosis, both of which are irreversible. We have developed a new objective CT analysis tool that combines densitometry with machine learning to detect high attenuation changes in visually normal appearing lung (NormHA) that may precede these diseases. METHODS: We trained the classification tool by placing 34,528 training points in chest CT scans from 297 COPDGene participants. The tool was then used to classify lung tissue in 9,038 participants as normal, emphysema, fibrotic/interstitial, or NormHA. Associations between the quartile of NormHA and plasma-based biomarkers, clinical severity, and mortality were evaluated using Jonckheere-Terpstra, pairwise Wilcoxon rank-sum tests, and multivariable linear and Cox regression. RESULTS: A higher percentage of lung occupied by NormHA was associated with higher C-reactive protein and intercellular adhesion molecule 1 (P for trend for both < .001). In analyses adjusted for multiple covariates, including high and low attenuation area, compared with those in the lowest quartile of NormHA, those in the highest quartile had a 6.50 absolute percent lower percent predicted lower FEV1 (P < .001), an 8.48 absolute percent lower percent predicted forced expiratory volume, a 10.78-meter shorter 6-min walk distance (P = .011), and a 56% higher risk of death (P = .003). These findings were present even in those individuals without visually defined interstitial lung abnormalities. CONCLUSIONS: A new class of NormHA on CT may represent a unique tissue class associated with adverse outcomes, independent of emphysema and fibrosis.


Asunto(s)
Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Lesión Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...