Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 26(6): 2524-2537, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24907342

RESUMEN

In addition to acting as photoprotective compounds, carotenoids also serve as precursors in the biosynthesis of several phytohormones and proposed regulatory signals. Here, we report a signaling process derived from carotenoids that regulates early chloroplast and leaf development. Biosynthesis of the signal depends on ζ-carotene desaturase activity encoded by the ζ-CAROTENE DESATURASE (ZDS)/CHLOROPLAST BIOGENESIS5 (CLB5) gene in Arabidopsis thaliana. Unlike other carotenoid-deficient plants, zds/clb5 mutant alleles display profound alterations in leaf morphology and cellular differentiation as well as altered expression of many plastid- and nucleus-encoded genes. The leaf developmental phenotypes and gene expression alterations of zds/clb5/spc1/pde181 plants are rescued by inhibitors or mutations of phytoene desaturase, demonstrating that phytofluene and/or ζ-carotene are substrates for an unidentified signaling molecule. Our work further demonstrates that this signal is an apocarotenoid whose synthesis requires the activity of the carotenoid cleavage dioxygenase CCD4.

2.
J Exp Bot ; 62(6): 2023-38, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21199890

RESUMEN

The 1-deoxy-D-xylulose 5-phosphate synthase (DXS) enzyme catalyses the first biosynthetic step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. In plants the MEP pathway is involved in the synthesis of the common precursors to the plastidic isoprenoids, isopentenyl diphosphate and dimethylallyl diphosphate, in plastids. DXS is recognized as limiting this pathway and is a potential target for manipulation to increase various isoprenoids such as carotenoids. In Zea mays three dxs genes exist that encode plastid-targeted functional enzymes. Evidence is provided that these genes represent phylogenetically distinctive clades conserved among plants preceding monocot-dicot divergence. There is differential accumulation for each dxs gene transcript, during development and in response to external signals such as light. At the protein level, the analysis demonstrates that in Z. mays, DXS protein is feedback regulated in response to the inhibition of the pathway flow. The results support that the multilevel regulation of DXS activity is conserved in evolution.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Transferasas/genética , Zea mays/genética , Secuencia de Aminoácidos , Secuencia de Bases , Perfilación de la Expresión Génica , Luz , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Zea mays/enzimología , Zea mays/crecimiento & desarrollo
3.
Plant Physiol ; 141(1): 75-84, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16531478

RESUMEN

Plastid isoprenoids (including hormones and photosynthetic pigments) are essential for plant growth and development, but relatively little is known of how the production of their metabolic precursors via the recently elucidated methylerythritol phosphate (MEP) pathway is regulated. We have identified an Arabidopsis (Arabidopsis thaliana) mutant that survives an otherwise lethal block of the MEP pathway with fosmidomycin (FSM). In rif10 (resistant to inhibition with FSM 10) plants, the accumulation of flux-controlling enzymes of the pathway is posttranscriptionally up-regulated. Strikingly, this phenotype is linked to a lower accumulation of plastidial isoprenoid pigments such as chlorophylls and carotenoids, resulting in mutant plants that are paler and smaller than the wild type. The rif10 mutant is impaired in plastid RNA processing due to a T-DNA insertion in the coding region of the At3g03710 gene encoding the chloroplast-targeted exoribonuclease polyribonucleotide phosphorylase. FSM resistance and other rif10-like phenotypes were also observed in wild-type Arabidopsis, tomato (Lycopersicon esculentum), and rice (Oryza sativa) seedlings grown in the presence of sublethal concentrations of chloramphenicol (an inhibitor of protein synthesis in plastids). By contrast, treatment with norflurazon (an inhibitor of carotenoid biosynthesis causing a similar pale cotyledon phenotype) did not result in FSM resistance. Together, the results support that plastome-encoded proteins are involved in negatively regulating the posttranscriptional accumulation of specific nuclear-encoded MEP pathway enzymes in chloroplasts. Regulation of the MEP pathway by a mechanism dependent on plastid cues might function under physiological conditions to finely adjust plastidial isoprenoid biosynthesis to the metabolic capabilities or requirements of plastids.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plastidios/metabolismo , Plantones/enzimología , Plantones/genética , Terpenos/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Herbicidas/farmacología , Modelos Biológicos , Mutación , Fenotipo , Fosfatos de Poliisoprenilo/metabolismo , Piridazinas/farmacología , ARN de Planta/metabolismo , Plantones/crecimiento & desarrollo , Transducción de Señal , Transferasas/genética , Transferasas/metabolismo , Xilosa/análogos & derivados , Xilosa/genética , Xilosa/metabolismo
4.
Plant Cell ; 17(2): 628-43, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659625

RESUMEN

The biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the two building blocks for isoprenoid biosynthesis, occurs by two independent pathways in plants. The mevalonic pathway operates in the cytoplasm, and the methyl-d-erythritol 4-phosphate (MEP) pathway operates in plastids. Plastidic isoprenoids play essential roles in plant growth and development. Plants must regulate the biosynthesis of isoprenoids to fulfill metabolic requirements in specific tissues and developmental conditions. The regulatory events that modulate the plant MEP pathway are not well understood. In this article, we demonstrate that the CHLOROPLAST BIOGENESIS6 (CLB6) gene, previously shown to be required for chloroplast development, encodes 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase, the last-acting enzyme of the MEP pathway. Comparative analysis of the expression levels of all MEP pathway gene transcripts and proteins in the clb6-1 mutant background revealed that posttranscriptional control modulates the levels of different proteins in this central pathway. Posttranscriptional regulation was also found during seedling development and during fosmidomycin inhibition of the pathway. Our results show that the first enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate synthase, is feedback regulated in response to the interruption of the flow of metabolites through the MEP pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Eritritol/análogos & derivados , Mutación , Fosfatos de Azúcar/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Proteínas de Cloroplastos , Eritritol/metabolismo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Filogenia , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA