Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Microbiol ; 2021: 6669263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936207

RESUMEN

Surfactants are utilized to reduce surface tension in aqueous and nonaqueous systems. Currently, most synthetic surfactants are derived from petroleum. However, these surfactants are usually highly toxic and are poorly degraded by microorganisms. To overcome these problems associated with synthetic surfactants, the production of microbial surfactants (called biosurfactants) has been studied in recent years. Most studies investigating the production of biosurfactants have been associated mainly with bacteria and yeasts; however, there is emerging evidence that those derived from fungi are promising. The filamentous fungi ascomycetes have been studied for the production of biosurfactants from renewable substrates. However, the yield of biosurfactants by ascomycetes depends on several factors, such as the species, nutritional sources, and environmental conditions. In this review, we explored the production, chemical characterization, and application of biosurfactants by ascomycetes.

2.
Int J Microbiol ; 2018: 5684261, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29853902

RESUMEN

Biosurfactants are surface-active compounds that have sparked interest in recent years because of their environmental advantages over conventional surfactants. The aim of this study was to investigate the production of biosurfactants by soil fungi isolated from the Amazon forest. Fungi colonies were isolated from soil samples and screened for biosurfactant production in submerged fermentation. In addition, the influences of bioprocess factors (carbon source, nitrogen source, pH, and fermentation time) were investigated. Finally, the biosurfactant produced was semipurified and submitted to stability tests. One hundred fungal cultures were obtained from the soil samples, identified by micromorphology, and submitted to screening for biosurfactant production. Sixty-one strains produced biosurfactants. The strain Penicillium 8CC2 showed the highest emulsification index (54.2%). The optimized bioprocess conditions for biosurfactant production by Penicillium 8CC2 were as follows: soybean oil, 20 g/L; yeast extract, 30 g/L; pH 9; duration of 9 days. The semipurified biosurfactant showed stability after heating at 100°C for 60 min and after the addition of 30% NaCl (w/v). Tween 80 (0.2% w/v), a conventional surfactant, was used as the control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...