Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 214(suppl 3): S258-S262, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27587631

RESUMEN

During the Ebola virus outbreak of 2013-2016, the Viral Special Pathogens Branch field laboratory in Sierra Leone tested approximately 26 000 specimens between August 2014 and October 2015. Analysis of the B2M endogenous control Ct values showed its utility in monitoring specimen quality, comparing results with different specimen types, and interpretation of results. For live patients, blood is the most sensitive specimen type and oral swabs have little diagnostic utility. However, swabs are highly sensitive for diagnostic testing of corpses.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Servicios de Laboratorio Clínico , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Humanos , Laboratorios , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Sierra Leona/epidemiología
2.
J Infect Dis ; 212 Suppl 2: S350-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26232439

RESUMEN

In August 2014, the Viral Special Pathogens Branch of the US Centers for Disease Control and Prevention established a field laboratory in Sierra Leone in response to the ongoing Ebola virus outbreak. Through March 2015, this laboratory tested >12 000 specimens from throughout Sierra Leone. We describe the organization and procedures of the laboratory located in Bo, Sierra Leone.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/virología , Centers for Disease Control and Prevention, U.S. , Brotes de Enfermedades , Epidemias , Humanos , Laboratorios , Sierra Leona/epidemiología , Estados Unidos
3.
Am J Trop Med Hyg ; 76(3): 438-42, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17360864

RESUMEN

Hantavirus pulmonary syndrome (HPS) is caused by an infection with viruses of the genus Hantavirus in the western hemisphere. Rodent hosts of hantaviruses are present throughout the United States. In July 2004, two HPS case-patients were identified in Randolph County, WV: a wildlife science graduate student working locally and a Randolph County resident. We interviewed family members and colleagues, reviewed medical records, and conducted environmental studies at likely exposure sites. Small mammals were trapped, and blood, urine, and tissue samples were submitted to the Centers for Disease Control and Prevention for laboratory analyses. These analyses confirmed that both patients were infected with Monongahela virus, a Sin Nombre hantavirus variant hosted by the Cloudland deer mouse, Peromyscus maniculatus nubiterrae. Other than one retrospectively diagnosed case in 1981, these are the first HPS cases reported in West Virginia. These cases emphasize the need to educate the public throughout the United States regarding risks and prevention measures for hantavirus infection.


Asunto(s)
Síndrome Pulmonar por Hantavirus/etiología , Virus Sin Nombre/aislamiento & purificación , Adulto , Animales , Reservorios de Enfermedades , Ecología , Humanos , Masculino , Peromyscus/virología , Filogenia , Virus Sin Nombre/clasificación
4.
Virology ; 361(2): 348-55, 2007 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-17197010

RESUMEN

The mature Gn glycoprotein of Crimean Congo hemorrhagic fever (CCHF) virus contains two predicted glycosylation sites (557N and 755N). Of these, N-glycans are added only at 557N, as evidenced by abrogation of Gn-glycosylation by mutation of 557N but not 755N site. Mutational block of Gn-glycosylation at 557N did not significantly affect Gn proteolytic processing but did result in mislocalization and retention of Gn and other proteins synthesized from the virus M segment ORF (GP160, GP85, GP38 and Gc) in the endoplasmic reticulum. In contrast to Gn, similar mutational analysis demonstrated that, while N-glycosylation occurs at the two predicted sites in Gc, abrogation of their glycosylation did not alter localization of any of the CCHF virus glycoproteins. Studies of Gn expressed in the absence of Gc demonstrate that, while Gn processing and localization are independent of Gc, all the CCHF virus glycoproteins appear dependent on N-glycosylation of Gn for correct folding, localization and transport.


Asunto(s)
Glicoproteínas/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Glicosilación , Humanos , Transporte de Proteínas
5.
J Virol ; 80(1): 514-25, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16352575

RESUMEN

Crimean-Congo hemorrhagic fever virus (genus Nairovirus, family Bunyaviridae) genome M segment encodes an unusually large (in comparison to members of other genera) polyprotein (1,684 amino acids in length) containing the two major structural glycoproteins, Gn and Gc, that are posttranslationally processed from precursors PreGn and PreGc by SKI-1 and SKI-1-like proteases, respectively. The characteristics of the N-terminal 519 amino acids located upstream of the mature Gn are unknown. A highly conserved furin/proprotein convertase (PC) cleavage site motif (RSKR247) is located between the variable N-terminal region that is predicted to have mucin-like properties and the rest of PreGn. Mutational analysis of the RSKR247 motif and use of a specific furin/PC inhibitor and brefeldin A demonstrate that furin/PC cleavage occurs at the RSKR247 motif of PreGn as the protein transits the trans Golgi network and generates a novel glycoprotein designated GP38. Immunoprecipitation analysis identified two additional proteins, GP85 and GP160, which contain both mucin and GP38 domain regions, and whose generation does not involve furin/PC cleavage. Consistent with glycosylation predictions, heavy O-linked glycosylation and moderate levels of N-glycans were detected in the GP85 and GP160 proteins, both of which contain the mucin domain. GP38, GP85, and GP160 are likely soluble proteins based on the lack of predicted transmembrane domains, their detection in virus-infected cell supernatants, and the apparent absence from virions. Analogy with soluble glycoproteins and mucin-like proteins encoded by other hemorrhagic fever-associated RNA viruses suggests these proteins could play an important role in viral pathogenesis.


Asunto(s)
Furina/metabolismo , Glicoproteínas/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proproteína Convertasas/metabolismo , Serina Endopeptidasas/metabolismo , Línea Celular , Glicoproteínas/química , Peso Molecular , Procesamiento Proteico-Postraduccional
6.
J Virol ; 78(19): 10370-7, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15367603

RESUMEN

Peripheral blood samples obtained from patients during an outbreak of Ebola virus (Sudan species) disease in Uganda in 2000 were used to phenotype peripheral blood mononuclear cells (PBMC), quantitate gene expression, measure antigenemia, and determine nitric oxide levels. It was determined that as the severity of disease increased in infected patients, there was a corresponding increase in antigenemia and leukopenia. Blood smears revealed thrombocytopenia, a left shift in neutrophils (in some cases degenerating), and atypical lymphocytes. Infected patients who died had reduced numbers of T cells, CD8(+) T cells, and activated (HLA-DR(+)) CD8(+) T cells, while the opposite was noted for patients who survived the disease. Expression levels of cytokines, Fas antigen, and Fas ligand (TaqMan quantitation) in PBMC from infected patients were not significantly different from those in uninfected patients (treated in the same isolation wards), nor was there a significant increase in expression compared to healthy volunteers (United States). This unresponsive state of PBMC from infected patients despite high levels of circulating antigen and virus replication suggests that some form of immunosuppression had developed. Ebola virus RNA levels (virus load) in PBMC specimens were found to be much higher in infected patients who died than patients who survived the disease. Similarly, blood levels of nitric oxide were much higher in fatal cases (increasing with disease severity), and extremely elevated levels (>/=150 microM) would have negatively affected vascular tone and contributed to virus-induced shock.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Leucocitos Mononucleares/fisiología , Óxido Nítrico/sangre , Antígenos Virales/sangre , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/microbiología , Citocinas/análisis , Ebolavirus/aislamiento & purificación , Proteína Ligando Fas , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Tolerancia Inmunológica , Recuento de Leucocitos , Leucocitos Mononucleares/citología , Leucopenia , Linfocitos/citología , Glicoproteínas de Membrana/análisis , Neutrófilos/citología , ARN Viral/sangre , Linfocitos T/citología , Trombocitopenia , Uganda/epidemiología , Carga Viral , Viremia , Receptor fas/análisis
7.
J Virol ; 77(16): 8640-9, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12885882

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. The mature virus glycoproteins, Gn and Gc (previously referred to as G2 and G1), are generated by proteolytic cleavage from precursor proteins. The amino termini of Gn and Gc are immediately preceded by tetrapeptides RRLL and RKPL, respectively, leading to the hypothesis that SKI-1 or related proteases may be involved (A. J. Sanchez, M. J. Vincent, and S. T. Nichol, J. Virol. 76:7263-7275, 2002). In vitro peptide cleavage data show that an RRLL peptide representing the Gn processing site is efficiently cleaved by SKI-1 protease, whereas an RKPL peptide representing the Gc processing site is cleaved at negligible levels. The efficient cleavage of RRLL peptide is consistent with the known recognition sequences of SKI-1, including the sequence determinants involved in the cleavage of the Lassa virus (family Arenaviridae) glycoprotein precursor. These in vitro findings were confirmed by expression of wild-type or mutant CCHF virus glycoproteins in CHO cells engineered to express functional or nonfunctional SKI-1. Gn processing was found to be dependent on functional SKI-1, whereas Gc processing was not. Gn processing occurred in the endoplasmic reticulum-cis Golgi compartments and was dependent on an R at the -4 position within the RRLL recognition motif, consistent with the known cleavage properties of SKI-1. Comparison of SKI-1 cleavage efficiency between peptides representing Lassa virus GP2 and CCHF virus Gn cleavage sites suggests that amino acids flanking the RRLL may modulate the efficiency. The apparent lack of SKI-1 cleavage at the CCHF virus Gc RKPL site indicates that related proteases, other than SKI-1, are likely to be involved in the processing at this site and identical or similar sites utilized in several New World arenaviruses.


Asunto(s)
Glicoproteínas/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proproteína Convertasas , Procesamiento Proteico-Postraduccional , Serina Endopeptidasas/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Compartimento Celular , Línea Celular , Cartilla de ADN , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Hidrólisis , Especificidad por Sustrato
8.
J Virol ; 76(14): 7263-75, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12072526

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) virus is the cause of an important tick-borne disease of humans throughout regions of Africa, Europe, and Asia. Like other members of the genus Nairovirus, family Bunyaviridae, the CCHF virus M genome RNA segment encodes the virus glycoproteins. Sequence analysis of the CCHF virus (Matin strain) M RNA segment revealed one major open reading frame that potentially encodes a precursor polyprotein 1,689 amino acids (aa) in length. Comparison of the deduced amino acid sequences of the M-encoded polyproteins of Nigerian, Pakistani, and Chinese CCHF virus strains revealed two distinct protein regions. The carboxyl-terminal 1,441 aa are relatively highly conserved (up to 8.4% identity difference), whereas the amino-terminal 243 to 248 aa are highly variable (up to 56.4% identity difference) and have mucin-like features, including a high serine, threonine, and proline content (up to 47.3%) and a potential for extensive O-glycosylation. Analysis of released virus revealed two major structural glycoproteins, G2 (37 kDa) and G1 (75 kDa). Virus protein analysis by various techniques, including pulse-chase analysis and/or reactivity with CCHF virus-specific polyclonal and antipeptide antibodies, demonstrated that the 140-kDa (which contains the mucin-like region) and 85-kDa nonstructural proteins are the precursors of the mature G2 and G1 proteins, respectively. The amino termini of the CCHF virus (Matin strain) G2 and G1 proteins were established by microsequencing to be equivalent to aa 525 and 1046, respectively, of the encoded polyprotein precursor. The tetrapeptides RRLL and RKPL are immediately upstream of the cleavage site for mature G2 and G1, respectively. These are completely conserved among the predicted polyprotein sequences of all the CCHF virus strains and closely resemble the tetrapeptides that represent the major cleavage recognition sites present in the glycoprotein precursors of arenaviruses, such as Lassa fever virus (RRLL) and Pichinde virus (RKLL). These results strongly suggest that CCHF viruses (and other members of the genus Nairovirus) likely utilize the subtilase SKI-1/S1P-like cellular proteases for the major glycoprotein precursor cleavage events, as has recently been demonstrated for the arenaviruses.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/virología , Humanos , Datos de Secuencia Molecular , Poliproteínas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Análisis de Secuencia de ADN , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...