Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(1): e1010850, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175823

RESUMEN

Inherited and germ-line de novo copy number variants (CNVs) are increasingly found to be correlated with human developmental and cancerous phenotypes. Several models for template switching during replication have been proposed to explain the generation of these gross chromosomal rearrangements. We proposed a model of template switching (ODIRA-origin dependent inverted repeat amplification) in which simultaneous ligation of the leading and lagging strands at diverging replication forks could generate segmental inverted triplications through an extrachromosomal inverted circular intermediate. Here, we created a genetic assay using split-ura3 cassettes to trap the proposed inverted intermediate. However, instead of recovering circular inverted intermediates, we found inverted linear chromosomal fragments ending in native telomeres-suggesting that a template switch had occurred at the centromere-proximal fork of a replication bubble. As telomeric inverted hairpin fragments can also be created through double strand breaks we tested whether replication errors or repair of double stranded DNA breaks were the most likely initiating event. The results from CRISPR/Cas9 cleavage experiments and growth in the replication inhibitor hydroxyurea indicate that it is a replication error, not a double stranded break that creates the inverted junctions. Since inverted amplicons of the SUL1 gene occur during long-term growth in sulfate-limited chemostats, we sequenced evolved populations to look for evidence of linear intermediates formed by an error in replication. All of the data are compatible with a two-step version of the ODIRA model in which sequential template switching at short inverted repeats between the leading and lagging strands at a replication fork, followed by integration via homologous recombination, generates inverted interstitial triplications.


Asunto(s)
Variaciones en el Número de Copia de ADN , Replicación del ADN , Humanos , Replicación del ADN/genética , Variaciones en el Número de Copia de ADN/genética , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , ADN
2.
Cell Rep ; 42(3): 112161, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36842087

RESUMEN

Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anafase , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Ribosomas/metabolismo , Replicación del ADN/genética , Replicación Viral
3.
Genetics ; 213(1): 229-249, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31292210

RESUMEN

The complex structure and repetitive nature of eukaryotic ribosomal DNA (rDNA) is a challenge for genome assembly, thus the consequences of sequence variation in rDNA remain unexplored. However, renewed interest in the role that rDNA variation may play in diverse cellular functions, aside from ribosome production, highlights the need for a method that would permit genetic manipulation of the rDNA. Here, we describe a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategy to edit the rDNA locus in the budding yeast Saccharomyces cerevisiae, developed independently but similar to one developed by others. Using this approach, we modified the endogenous rDNA origin of replication in each repeat by deleting or replacing its consensus sequence. We characterized the transformants that have successfully modified their rDNA locus and propose a mechanism for how CRISPR/Cas9-mediated editing of the rDNA occurs. In addition, we carried out extended growth and life span experiments to investigate the long-term consequences that altering the rDNA origin of replication have on cellular health. We find that long-term growth of the edited clones results in faster-growing suppressors that have acquired segmental aneusomy of the rDNA-containing region of chromosome XII or aneuploidy of chromosomes XII, II, or IV. Furthermore, we find that all edited isolates suffer a reduced life span, irrespective of their levels of extrachromosomal rDNA circles. Our work demonstrates that it is possible to quickly, efficiently, and homogeneously edit the rDNA origin via CRISPR/Cas9.


Asunto(s)
Sistemas CRISPR-Cas , ADN Ribosómico/genética , Edición Génica/métodos , Origen de Réplica , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Secuencia de Consenso , Aptitud Genética , Genotipo , Fenotipo
4.
PLoS Genet ; 13(10): e1007041, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29036220

RESUMEN

A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Microtia Congénita/genética , Replicación del ADN/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Complejo de Reconocimiento del Origen/genética , Rótula/anomalías , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos/genética , Rotura Cromosómica , ADN Ribosómico/genética , Humanos , Mutación Missense , Rótula/fisiología , ARN Ribosómico , Saccharomyces cerevisiae/genética
5.
Nucleic Acids Res ; 45(10): 5887-5900, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28398510

RESUMEN

DNA double-strand breaks (DSBs) are repaired by either the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Pathway choice is determined by the generation of 3΄ single-strand DNA overhangs at the break that are initiated by the action of the Mre11-Rad50-Xrs2 (MRX) complex to direct repair toward HR. DSB repair occurs in the context of chromatin, and multiple chromatin regulators have been shown to play important roles in the repair process. We have investigated the role of the SWI/SNF ATP-dependent nucleosome-remodeling complex in the repair of a defined DNA DSB. SWI/SNF was previously shown to regulate presynaptic events in HR, but its function in these events is unknown. We find that in the absence of functional SWI/SNF, the initiation of DNA end resection is significantly delayed. The delay in resection initiation is accompanied by impaired recruitment of MRX to the DSB, and other functions of MRX in HR including the recruitment of long-range resection factors and activation of the DNA damage response are also diminished. These phenotypes are correlated with a delay in the eviction of nucleosomes surrounding the DSB. We propose that SWI/SNF orchestrates the recruitment of a pool of MRX that is specifically dedicated to HR.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Reparación del ADN por Unión de Extremidades , ADN de Hongos/genética , ADN/genética , Nucleosomas/química , Reparación del ADN por Recombinación , Factores de Transcripción/genética , Adenosina Trifosfato/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Galactosa/metabolismo , Galactosa/farmacología , Nucleosomas/efectos de los fármacos , Nucleosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
6.
G3 (Bethesda) ; 4(3): 399-409, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24368781

RESUMEN

Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.


Asunto(s)
Saccharomyces cerevisiae/genética , Adaptación Biológica , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Cinética , Mutación , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Selección Genética , Análisis de Secuencia de ADN , Transportadores de Sulfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA