Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(6): 1002-1011, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294274

RESUMEN

Immune-mediated liver damage is the driver of disease progression in patients with chronic hepatitis B virus (HBV) infection. Liver damage is an Ag-independent process caused by bystander activation of CD8 T cells and NK cells. How bystander lymphocyte activation is initiated in chronic hepatitis B patients remains unclear. Periods of liver damage, called hepatic flares, occur unpredictably, making early events difficult to capture. To address this obstacle, we longitudinally sampled the liver of chronic hepatitis B patients stopping antiviral therapy and analyzed immune composition and activation using flow cytometry and single-cell RNA sequencing. At 4 wk after stopping therapy, HBV replication rebounded but no liver damage was detectable. There were no changes in cell frequencies at viral rebound. Single-cell RNA sequencing revealed upregulation of IFN-stimulated genes (ISGs) and proinflammatory cytokine migration inhibitory factor (MIF) at viral rebound in patients that go on to develop hepatic flares 6-18 wk after stopping therapy. The type I IFN signature was only detectable within the liver, and neither IFN-α/ß or ISG induction could be detected in the peripheral blood. In vitro experiments confirmed the type I IFN-dependent ISG profile whereas MIF was induced primarily by IL-12. MIF exposure further amplified inflammatory cytokine production by myeloid cells. Our data show that innate immune activation is detectable in the liver before clinically significant liver damage is evident. The combination of type I IFN and enhanced cytokine production upon MIF exposure represent the earliest immunological triggers of lymphocyte bystander activation observed in hepatic flares associated with chronic HBV infection.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Humanos , Virus de la Hepatitis B , Hígado , Citocinas/metabolismo , Antivirales/uso terapéutico , Antivirales/metabolismo
2.
JHEP Rep ; 5(9): 100817, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37600958

RESUMEN

Background & Aims: Novel therapies for chronic hepatitis B (CHB), such as RNA interference, target all viral RNAs for degradation, whereas nucleoside analogues are thought to block reverse transcription with minimal impact on viral transcripts. However, limitations in technology and sampling frequency have been obstacles to measuring actual changes in HBV transcription in the liver of patients starting therapy. Methods: We used elective liver sampling with fine-needle aspirates (FNAs) to investigate the impact of treatment on viral replication in patients with CHB. Liver FNAs were collected from patients with CHB at baseline and 12 and 24 weeks after starting tenofovir alafenamide treatment. Liver FNAs were subjected to single-cell RNA sequencing and analysed using the Viral-Track method. Results: HBV was the only viral genome detected and was enriched within hepatocytes. The 5' sequencing technology identified protein-specific HBV transcripts and showed that tenofovir alafenamide therapy specifically reduced pre-genomic RNA transcripts with little impact on HBsAg or HBx transcripts. Infected hepatocytes displayed unique gene signatures associated with an immunological response to viral infection. Conclusions: Longitudinal liver sampling, combined with single-cell RNA sequencing, captured the dynamic impact of antiviral therapy on the replication status of HBV and revealed host-pathogen interactions at the transcriptional level in infected hepatocytes. This sequencing-based approach is applicable to early-stage clinical studies, enabling mechanistic studies of immunopathology and the effect of novel therapeutic interventions. Impact and Implications: Infection-dependent transcriptional changes and the impact of antiviral therapy on viral replication can be measured in longitudinal human liver biopsies using single-cell RNA sequencing data.

3.
Hepatology ; 78(5): 1525-1541, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37158243

RESUMEN

BACKGROUND AND AIMS: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing. APPROACH AND RESULTS: We developed a workflow that enabled multi-site international studies and centralized single-cell RNA sequencing. Blood and liver fine-needle aspirations were collected, and cellular and molecular captures were compared between the Seq-Well S 3 picowell-based and the 10× Chromium reverse-emulsion droplet-based single-cell RNA sequencing technologies. Both technologies captured the cellular diversity of the liver, but Seq-Well S 3 effectively captured neutrophils, which were absent in the 10× dataset. CD8 T cells and neutrophils displayed distinct transcriptional profiles between blood and liver. In addition, liver fine-needle aspirations captured a heterogeneous liver macrophage population. Comparison between untreated patients with chronic hepatitis B and patients treated with nucleoside analogs showed that myeloid cells were highly sensitive to environmental changes while lymphocytes displayed minimal differences. CONCLUSIONS: The ability to electively sample and intensively profile the immune landscape of the liver, and generate high-resolution data, will enable multi-site clinical studies to identify biomarkers for intrahepatic immune activity in HBV and beyond.


Asunto(s)
Hepatitis B Crónica , Animales , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Biopsia con Aguja Fina , Virus de la Hepatitis B/genética , Hígado/patología , Linfocitos T CD8-positivos , Biomarcadores , Análisis de Secuencia de ARN
4.
Hepatology ; 75(6): 1539-1550, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34743340

RESUMEN

BACKGROUND AND AIMS: CD8 T cells are essential in controlling HBV infection. Viral control is dependent on efficient recognition of HBV-infected hepatocytes by CD8 T cells, which can induce direct lysis of infected hepatocytes. In addition, CD8 T cells produce interferon (IFN)-γ, which mediates noncytopathic viral clearance. Innate immunomodulators and HBV-targeted RNA interference (RNAi) are being developed to treat chronic hepatitis B (CHB), but may modify HBV antigen presentation and impact CD8 T-cell recognition, in addition to their primary mechanisms of action. APPROACH AND RESULTS: HBV-infected HepG2-NTCP cells were treated with tenofovir disoproxil fumarate (TDF), Toll-like receptor (TLR) 7/8 agonists, TLR7/8 conditioned media (CM) collected from immune cells, or RNAi using short interfering RNAs. The effect of these treatments on antigen presentation was measured through coculture with CD8 T cells recognizing human leukocyte antigen-A0201 restricted epitopes, HBc18-27 or HBs183-191. Cytokine profiles of TLR7/8 CM were measured using a cytometric bead array. TDF reduced viral replication, but not CD8 T-cell recognition, of infected cells. Direct exposure of infected HepG2-NTCP to TLR7/8 agonists had no impact on T-cell recognition. Exposure of infected HepG2-NTCP to TLR7/8 CM enhanced HBV-specific CD8 T-cell recognition through type 1 interferon (IFN) and IFN-γ-dependent mechanisms. RNAi rapidly suppressed HBV-DNA, HBcAg, and HBsAg expression, impairing recognition by HBV-specific CD8 T cells. CONCLUSIONS: Immunomodulation and RNAi, but not nucleos(t)ide analogues, alter the recognition of infected HepG2-NTCP by HBV-specific CD8 T cells. Understanding these changes will inform combination treatments for CHB.


Asunto(s)
Linfocitos T CD8-positivos , Hepatitis B Crónica , Inmunomodulación , Interferencia de ARN , Linfocitos T CD8-positivos/inmunología , Medios de Cultivo Condicionados , Virus de la Hepatitis B , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/terapia , Humanos , Interferón Tipo I/genética , Tenofovir/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...