Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(5): 387-403, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38373073

RESUMEN

The dynamic nature of the microtubule network is dependent in part by post-translational modifications (PTMs) - particularly through acetylation, which stabilizes the microtubule network. Whether PTMs of the microtubule network in vascular smooth muscle cells (VSMCs) contribute to the pathophysiology of hypertension is unknown. The aim of this study was to determine the acetylated state of the microtubule network in the mesenteric arteries of spontaneously hypertensive rats (SHR). Experiments were performed on male normotensive rats and SHR mesenteric arteries. Western blotting and mass spectrometry determined changes in tubulin acetylation. Wire myography was used to investigate the effect of tubacin on isoprenaline-mediated vasorelaxations. Isolated cells from normotensive rats were used for scanning ion conductance microscopy (SICM). Mass spectrometry and Western blotting showed that tubulin acetylation is increased in the mesenteric arteries of the SHR compared with normotensive rats. Tubacin enhanced the ß-adrenoceptor-mediated vasodilatation by isoprenaline when the endothelium was intact, but attenuated relaxations when the endothelium was denuded or nitric oxide production was inhibited. By pre-treating vessels with colchicine to disrupt the microtubule network, we were able to confirm that the effects of tubacin were microtubule-dependent. Using SICM, we examined the cell surface Young's modulus of VSMCs, but found no difference in control, tubacin-treated, or taxol-treated cells. Acetylation of tubulin at Lys40 is elevated in mesenteric arteries from the SHR. Furthermore, this study shows that tubacin has an endothelial-dependent bimodal effect on isoprenaline-mediated vasorelaxation.


Asunto(s)
Anilidas , Ácidos Hidroxámicos , Hipertensión , Tubulina (Proteína) , Ratas , Animales , Masculino , Ratas Endogámicas WKY , Acetilación , Isoproterenol/farmacología , Ratas Endogámicas SHR , Arterias Mesentéricas , Vasodilatación , Microtúbulos , Endotelio Vascular/fisiología
2.
Circ Res ; 133(11): 944-958, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37869877

RESUMEN

BACKGROUND: ß1AR (beta-1 adrenergic receptor) and ß2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac ß-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that ß-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS: The localization pattern of ß-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on ß-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible ß-AR translation sites in cardiomyocytes. The mechanism by which ß-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS: ß1AR and ß2AR mRNAs show differential localization in cardiomyocytes, with ß1AR found in the perinuclear region and ß2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of ß2AR transcripts toward the perinuclear region. The close proximity between ß2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of ß2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both ß1AR and ß2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to ß-AR mRNA redistribution and impaired ß2AR function in failing hearts. CONCLUSIONS: Asymmetrical microtubule-dependent trafficking dictates differential ß1AR and ß2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 ß-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted ß2AR-mediated cyclic adenosine monophosphate signaling.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratas , Animales , Hibridación Fluorescente in Situ , Insuficiencia Cardíaca/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , AMP Cíclico/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Microtúbulos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología
3.
Circ Res ; 133(2): 120-137, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37313722

RESUMEN

BACKGROUND: Beta-2 adrenergic receptors (ß2ARs) but not beta-2 adrenergic receptors (ß1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and ß adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS: Global signaling between LTCCs and ß adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and ß1AR or ß2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when ß2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and ß2AR was lost. Interestingly, local stimulation of ß1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via ß1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the ß2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream ß1AR and results in an increase in LTCC current. CONCLUSIONS: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via ß2AR, but not ß1AR. This may explain how ß2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.


Asunto(s)
Caveolina 3 , Insuficiencia Cardíaca , Ratones , Animales , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Canales de Calcio Tipo L/metabolismo
4.
Front Physiol ; 13: 1023755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439245

RESUMEN

Background: The increased risk of post-menopausal women developing abnormalities of heart function emphasises the requirement to understand the effect of declining oestrogen levels on cardiac electrophysiology and structure, and investigate possible therapeutic targets, namely the G protein-coupled oestrogen receptor 1 (GPER). Methods: Female guinea pigs underwent sham or ovariectomy (OVx) surgeries. Cardiomyocytes were isolated 150-days post-operatively. Membrane structure was assessed using di-8-ANEPPs staining and scanning ion conductance microscopy. Imunnohistochemistry (IHC) determined the localisation of oestrogen receptors. The effect of GPER activation on excitation-contraction coupling mechanisms were assessed using electrophysiological and fluorescence techniques. Downstream signalling proteins were investigated by western blot. Results: IHC staining confirmed the presence of nuclear oestrogen receptors and GPER, the latter prominently localised to the peri-nuclear region and having a clear striated pattern elsewhere in the cells. Following OVx, GPER expression increased and its activation reduced Ca2+ transient amplitude (by 40%) and sarcomere shortening (by 32%). In these cells, GPER activation reduced abnormal spontaneous Ca2+ activity, shortened action potential duration and limited drug-induced early after-depolarisation formation. Conclusion: In an animal species with comparable steroidogenesis and cardiac physiology to humans, we show the expression and localisation of all three oestrogen receptors in cardiac myocytes. We found that following oestrogen withdrawal, GPER expression increased and its activation limited arrhythmogenic behaviours in this low oestrogen state, indicating a potential cardioprotective role of this receptor in post-menopausal women.

5.
J Physiol ; 600(12): 2853-2875, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413134

RESUMEN

Sympathetic neurons densely innervate the myocardium with non-random topology and establish structured contacts (i.e. neuro-cardiac junctions, NCJ) with cardiomyocytes, allowing synaptic intercellular communication. Establishment of heart innervation is regulated by molecular mediators released by myocardial cells. The mechanisms underlying maintenance of cardiac innervation in the fully developed heart, are, however, less clear. Notably, several cardiac diseases, primarily affecting cardiomyocytes, are associated with sympathetic denervation, supporting the hypothesis that retrograde 'cardiomyocyte-to-sympathetic neuron' communication is essential for heart cellular homeostasis. We aimed to determine whether cardiomyocytes provide nerve growth factor (NGF) to sympathetic neurons, and the role of the NCJ in supporting such retrograde neurotrophic signalling. Immunofluorescence on murine and human heart slices shows that NGF and its receptor, tropomyosin-receptor-kinase-A, accumulate, respectively, in the pre- and post-junctional sides of the NCJ. Confocal immunofluorescence, scanning ion conductance microscopy and molecular analyses, in co-cultures, demonstrate that cardiomyocytes feed NGF to sympathetic neurons, and that this mechanism requires a stable intercellular contact at the NCJ. Consistently, cardiac fibroblasts, devoid of NCJ, are unable to sustain SN viability. ELISA assay and competition binding experiments suggest that this depends on the NCJ being an insulated microenvironment, characterized by high [NGF]. In further support, real-time imaging of tropomyosin-receptor-kinase-A vesicle movements demonstrate that efficiency of neurotrophic signalling parallels the maturation of such structured intercellular contacts. Altogether, our results demonstrate the mechanisms which link sympathetic neuron survival to neurotrophin release by directly innervated cardiomyocytes, conceptualizing sympathetic neurons as cardiomyocyte-driven heart drivers. KEY POINTS: CMs are the cell source of nerve growth factor (NGF), required to sustain innervating cardiac SNs; NCJ is the place of the intimate liaison, between SNs and CMs, allowing on the one hand neurons to peremptorily control CM activity, and on the other, CMs to adequately sustain the contacting, ever-changing, neuronal actuators; alterations in NCJ integrity may compromise the efficiency of 'CM-to-SN' signalling, thus representing a potentially novel mechanism of sympathetic denervation in cardiac diseases.


Asunto(s)
Cardiopatías , Miocitos Cardíacos , Animales , Cardiopatías/metabolismo , Humanos , Ratones , Miocitos Cardíacos/fisiología , Factor de Crecimiento Nervioso/metabolismo , Neuronas/fisiología , Receptor trkA/metabolismo , Sistema Nervioso Simpático/fisiología , Tropomiosina/metabolismo
6.
Sci Rep ; 11(1): 4840, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649357

RESUMEN

Right ventricle (RV) dysfunction is an independent predictor of patient survival in heart failure (HF). However, the mechanisms of RV progression towards failing are not well understood. We studied cellular mechanisms of RV remodelling in a rat model of left ventricle myocardial infarction (MI)-caused HF. RV myocytes from HF rats show significant cellular hypertrophy accompanied with a disruption of transverse-axial tubular network and surface flattening. Functionally these cells exhibit higher contractility with lower Ca2+ transients. The structural changes in HF RV myocytes correlate with more frequent spontaneous Ca2+ release activity than in control RV myocytes. This is accompanied by hyperactivated L-type Ca2+ channels (LTCCs) located specifically in the T-tubules of HF RV myocytes. The increased open probability of tubular LTCCs and Ca2+ sparks activation is linked to protein kinase A-mediated channel phosphorylation that occurs locally in T-tubules. Thus, our approach revealed that alterations in RV myocytes in heart failure are specifically localized in microdomains. Our findings may indicate the development of compensatory, though potentially arrhythmogenic, RV remodelling in the setting of LV failure. These data will foster better understanding of mechanisms of heart failure and it could promote an optimized treatment of patients.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Calcio/metabolismo , Insuficiencia Cardíaca , Ventrículos Cardíacos , Miocitos Cardíacos , Disfunción Ventricular Derecha , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología
7.
Hypertension ; 77(2): 605-616, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33356404

RESUMEN

Pulmonary hypertension is a complex disorder characterized by pulmonary vascular remodeling and right ventricular hypertrophy, leading to right heart failure. The mechanisms underlying this process are not well understood. We hypothesize that the structural remodeling occurring in the cardiomyocytes of the right ventricle affects the cytosolic Ca2+ handling leading to arrhythmias. After 12 days of monocrotaline-induced pulmonary hypertension in rats, epicardial mapping showed electrical remodeling in both ventricles. In myocytes isolated from the hypertensive rats, a combination of high-speed camera and confocal line-scan documented a prolongation of Ca2+ transients along with a higher local Ca2+-release activity. These Ca2+ transients were less synchronous than in controls, likely due to disorganized transverse-axial tubular system. In fact, following pulmonary hypertension, hypertrophied right ventricular myocytes showed significantly reduced number of transverse tubules and increased number of axial tubules; however, Stimulation Emission Depletion microscopy demonstrated that the colocalization of L-type Ca2+ channels and RyR2 (ryanodine receptor 2) remained unchanged. Finally, Stimulation Emission Depletion microscopy and super-resolution scanning patch-clamp analysis uncovered a decrease in the density of active L-type Ca2+ channels in right ventricular myocytes with an elevated open probability of the T-tubule anchored channels. This may represent a general mechanism of how nanoscale structural changes at the early stage of pulmonary hypertension impact on the development of the end stage failing phenotype in the right ventricle.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Hipertensión Pulmonar/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Masculino , Monocrotalina , Ratas , Ratas Sprague-Dawley , Remodelación Vascular/fisiología
8.
Cardiovasc Res ; 117(1): 149-161, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32053184

RESUMEN

AIM: In cardiomyocytes, transverse tubules (T-tubules) associate with the sarcoplasmic reticulum (SR), forming junctional membrane complexes (JMCs) where L-type calcium channels (LTCCs) are juxtaposed to Ryanodine receptors (RyR). Junctophilin-2 (JPH2) supports the assembly of JMCs by tethering T-tubules to the SR membrane. T-tubule remodelling in cardiac diseases is associated with downregulation of JPH2 expression suggesting that JPH2 plays a crucial role in T-tubule stability. Furthermore, increasing evidence indicate that JPH2 might additionally act as a modulator of calcium signalling by directly regulating RyR and LTCCs. This study aimed at determining whether JPH2 overexpression restores normal T-tubule structure and LTCC function in cultured cardiomyocytes. METHODS AND RESULTS: Rat ventricular myocytes kept in culture for 4 days showed extensive T-tubule remodelling with impaired JPH2 localization and relocation of the scaffolding protein Caveolin3 (Cav3) from the T-tubules to the outer membrane. Overexpression of JPH2 restored T-tubule structure and Cav3 relocation. Depletion of membrane cholesterol by chronic treatment with methyl-ß-cyclodextrin (MßCD) countered the stabilizing effect of JPH2 overexpression on T-tubules and Cav3. Super-resolution scanning patch-clamp showed that JPH2 overexpression greatly increased the number of functional LTCCs at the plasma membrane. Treatment with MßCD reduced LTCC open probability and activity. Proximity ligation assays showed that MßCD did not affect JPH2 interaction with RyR and the pore-forming LTCC subunit Cav1.2, but strongly impaired JPH2 association with Cav3 and the accessory LTCC subunit Cavß2. CONCLUSIONS: JPH2 promotes T-tubule structural stability and recruits functional LTCCs to the membrane, most likely by directly binding to the channel. Cholesterol is involved in the binding of JPH2 to T-tubules as well as in the modulation of LTCC activity. We propose a model where cholesterol and Cav3 support the assembly of lipid rafts which provide an anchor for JPH2 to form JMCs and a platform for signalling complexes to regulate LTCC activity.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Caveolina 3/metabolismo , Células Cultivadas , Colesterol/metabolismo , Masculino , Unión Proteica , Transporte de Proteínas , Ratas Sprague-Dawley
9.
Circ Res ; 128(1): 92-114, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33092464

RESUMEN

RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Calcio/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio Tipo L/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Gatos , Células Cultivadas , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Humanos , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Cinética , Masculino , Proteínas de la Membrana/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas Musculares/genética , Mutación , Miocitos Cardíacos/patología , Biogénesis de Organelos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina
10.
Front Cell Dev Biol ; 8: 695, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850816

RESUMEN

Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure.

11.
Nanoscale ; 12(30): 16315-16329, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32720664

RESUMEN

Mechanical properties of single myocytes contribute to the whole heart performance, but the measurement of mechanics in living cells at high resolution with minimal force interaction remains challenging. Angiotensin II (AngII) is a peptide hormone that regulates a number of physiological functions, including heart performance. It has also been shown to contribute to cell mechanics by inducing cell stiffening. Using non-contact high-resolution Scanning Ion Conductance Microscopy (SICM), we determine simultaneously cell topography and membrane transverse Young's modulus (YM) by a constant pressure application through a nanopipette. While applying pressure, the vertical position is recorded and a deformation map is generated from which YM can be calculated and corrected for the uneven geometry. High resolution of this method also allows studying specific membrane subdomains, such as Z-grooves and crests. We found that short-term AngII treatment reduces the transversal YM in isolated adult rat cardiomyocytes acting via an AT1 receptor. Blocking either a TGF-ß1 receptor or Rho kinase abolishes this effect. Analysis of the cytoskeleton showed that AngII depletes microtubules by decreasing long-lived detyrosinated and acetylated microtubule populations. Interestingly, in the failing cardiomyocytes, which are stiffer than controls, the short-term AngII treatment also reduces the YM, thus normalizing the mechanical state of cells. This suggests that the short-term softening effect of AngII on cardiac cells is opposite to the well-characterized long-term hypertrophic effect. In conclusion, we generate a precise nanoscale indication map of location-specific transverse cortical YM within the cell and this can substantially advance our understanding of cellular mechanics in a physiological environment, for example in isolated cardiac myocytes.


Asunto(s)
Angiotensina II , Miocitos Cardíacos , Animales , Células Cultivadas , Microtúbulos , Ratas , Transducción de Señal
12.
EBioMedicine ; 57: 102845, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32580140

RESUMEN

BACKGROUND: Subcellular localization and function of L-type calcium channels (LTCCs) play an important role in regulating contraction of cardiomyocytes. Understanding how this is affected by the disruption of transverse tubules during heart failure could lead to new insights into the disease. METHODS: Cardiomyocytes were isolated from healthy donor hearts, as well as from patients with cardiomyopathies and with left ventricular assist devices. Scanning ion conductance and confocal microscopy was used to study membrane structures in the cells. Super-resolution scanning patch-clamp was used to examine LTCC function in different microdomains. Computational modeling predicted the impact of these changes to arrhythmogenesis at the whole-heart level. FINDINGS: We showed that loss of structural organization in failing myocytes leads to re-distribution of functional LTCCs from the T-tubules to the sarcolemma. In ischemic cardiomyopathy, the increased LTCC open probability in the T-tubules depends on the phosphorylation by protein kinase A, whereas in dilated cardiomyopathy, the increased LTCC opening probability in the sarcolemma results from enhanced phosphorylation by calcium-calmodulin kinase II. LVAD implantation corrected LTCCs pathophysiological activity, although it did not improve their distribution. Using computational modeling in a 3D anatomically-realistic human ventricular model, we showed how LTCC location and activity can trigger heart rhythm disorders of different severity. INTERPRETATION: Our findings demonstrate that LTCC redistribution and function differentiate between disease aetiologies. The subcellular changes observed in specific microdomains could be the consequence of the action of distinct protein kinases. FUNDING: This work was supported by NIH grant (ROI-HL 126802 to NT-JG) and British Heart Foundation (grant RG/17/13/33173 to JG, project grant PG/16/17/32069 to RAC). Funders had no role in study design, data collection, data analysis, interpretation, writing of the report.


Asunto(s)
Canales de Calcio Tipo L/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomiopatía Dilatada/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Isquemia Miocárdica/genética , Anciano , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Femenino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Trasplante de Corazón/efectos adversos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/ultraestructura , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sarcolema/genética , Sarcolema/patología , Donantes de Tejidos , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
13.
Proc Natl Acad Sci U S A ; 117(6): 2764-2766, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988123

RESUMEN

The field of cardiomyocyte mechanobiology is gaining significant attention, due to accumulating evidence concerning the significant role of cellular mechanical effects on the integrated function of the heart. To date, the protein titin has been demonstrated as a major contributor to the cardiomyocytes Young's modulus (YM). The microtubular network represents another potential regulator of cardiac mechanics. However, the contribution of microtubules (MTs) to the membrane YM is still understudied and has not been interrogated in the context of myocardial infarction (MI) or mechanical loading and unloading. Using nanoscale mechanoscanning ion conductance microscopy, we demonstrate that MTs contribute to cardiomyocyte transverse YM in healthy and pathological states with different mechanical loading. Specifically, we show that posttranslational modifications of MTs have differing effects on cardiomyocyte YM: Acetylation provides flexibility, whereas detyrosination imparts rigidity. Further studies demonstrate that there is no correlation between the total protein amount of acetylated and detyrosinated MT. Yet, in the polymerized-only populations, an increased level of acetylation results in a decline of detyrosinated MTs in an MI model.


Asunto(s)
Microtúbulos/metabolismo , Miocitos Cardíacos/química , Miocitos Cardíacos/metabolismo , Acetilación , Animales , Fenómenos Biomecánicos , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Módulo de Elasticidad , Masculino , Microtúbulos/química , Procesamiento Proteico-Postraduccional , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley
14.
Elife ; 92020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31934859

RESUMEN

We investigated targeting mechanisms of Na+ and KATP channels to the intercalated disk (ICD) of cardiomyocytes. Patch clamp and surface biotinylation data show reciprocal downregulation of each other's surface density. Mutagenesis of the Kir6.2 ankyrin binding site disrupts this functional coupling. Duplex patch clamping and Angle SICM recordings show that INa and IKATP functionally co-localize at the rat ICD, but not at the lateral membrane. Quantitative STORM imaging show that Na+ and KATP channels are localized close to each other and to AnkG, but not to AnkB, at the ICD. Peptides corresponding to Nav1.5 and Kir6.2 ankyrin binding sites dysregulate targeting of both Na+ and KATP channels to the ICD, but not to lateral membranes. Finally, a clinically relevant gene variant that disrupts KATP channel trafficking also regulates Na+ channel surface expression. The functional coupling between these two channels need to be considered when assessing clinical variants and therapeutics.


Asunto(s)
Ancirinas/química , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Sitios de Unión , Biotinilación , Células HEK293 , Humanos , Mutagénesis , Miocardio/metabolismo , Técnicas de Placa-Clamp , Ratas
15.
FASEB J ; 33(9): 10453-10468, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31253057

RESUMEN

Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43.


Asunto(s)
Adhesión Celular , Comunicación Celular , Movimiento Celular , Conexina 43/metabolismo , Miocitos Cardíacos/fisiología , Miofibroblastos/fisiología , Animales , Antineoplásicos/farmacología , Células Cultivadas , Uniones Comunicantes , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/efectos de los fármacos , Fenilbutiratos/farmacología , Ratas , Ratas Sprague-Dawley
16.
Front Physiol ; 9: 1302, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283354

RESUMEN

Introduction: We investigated the effect of partial mechanical unloading (PMU) of the heart on the physiology of calcium and beta-adrenoceptor-cAMP (ßAR-cAMP) microdomains. Previous studies have investigated PMU using a model of heterotopic-heart and lung transplantation (HTHAL). These studies have demonstrated that PMU disrupts the structure of cardiomyocytes and calcium handling. We sought to understand these processes by studying L-Type Calcium Channel (LTCC) activity and sub-type-specific ßAR-cAMP signaling within cardiomyocyte membrane microdomains. Method: We utilized an 8-week model of HTHAL, whereby the hearts of syngeneic Lewis rats were transplanted into the abdomens of randomly assigned cage mates. A pronounced atrophy was observed in hearts after HTHAL. Cardiomyocytes were isolated via enzymatic perfusion. We utilized Förster Resonance Energy Transfer (FRET) based cAMP-biosensors and scanning ion conductance microscopy (SICM) based methodologies to study localization of LTCC and ßAR-cAMP signaling. Results: ß2AR-cAMP responses measured by FRET in the cardiomyocyte cytosol were reduced by PMU (loaded 28.51 ± 7.18% vs. unloaded 10.84 ± 3.27% N,n 4/10-13 mean ± SEM ∗ p < 0.05). There was no effect of PMU on ß2AR-cAMP signaling in RII_Protein Kinase A domains. ß1AR-cAMP was unaffected by PMU in either microdomain. Consistent with this SICM/FRET analysis demonstrated that ß2AR-cAMP was specifically reduced in t-tubules (TTs) after PMU (loaded TT 0.721 ± 0.106% vs. loaded crest 0.104 ± 0.062%, unloaded TT 0.112 ± 0.072% vs. unloaded crest 0.219 ± 0.084% N,n 5/6-9 mean ± SEM ∗∗ p < 0.01, ∗∗∗ p < 0.001 vs. loaded TT). By comparison ß1AR-cAMP responses in either TT or sarcolemmal crests were unaffected by the PMU. LTCC occurrence and open probability (Po) were reduced by PMU (loaded TT Po 0.073 ± 0.011% vs. loaded crest Po 0.027 ± 0.006% N,n 5/18-26 mean ± SEM ∗ p < 0.05) (unloaded TT 0.0350 ± 0.003% vs. unloaded crest Po 0.025 N,n 5/20-30 mean ± SEM NS # p < 0.05 unloaded vs. loaded TT). We discovered that PMU had reduced the association between Caveolin-3, Junctophilin-2, and Cav1.2. Discussion: PMU suppresses' ß2AR-cAMP and LTCC activity. When activated, the signaling of ß2AR-cAMP and LTCC become more far-reaching after PMU. We suggest that a situation of 'suppression/decompartmentation' is elicited by the loss of refined cardiomyocyte structure following PMU. As PMU is a component of modern device therapy for heart failure this study has clinical ramifications and raises important questions for regenerative medicine.

17.
Elife ; 72018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30106376

RESUMEN

Computational modeling indicates that cardiac conduction may involve ephaptic coupling - intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that ß1(SCN1B) -mediated adhesion scaffolds trans-activating NaV1.5 (SCN5A) channels within narrow (<30 nm) perinexal clefts adjacent to gap junctions (GJs), facilitating ephaptic coupling. Super-resolution imaging indicated preferential ß1 localization at the perinexus, where it co-locates with NaV1.5. Smart patch clamp (SPC) indicated greater sodium current density (INa) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, ßadp1, potently and selectively inhibited ß1-mediated adhesion, in electric cell-substrate impedance sensing studies. ßadp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal INa, but not whole cell INa, in myocyte monolayers. In optical mapping studies, ßadp1 precipitated arrhythmogenic conduction slowing. In summary, ß1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Comunicación Celular/genética , Uniones Comunicantes/ultraestructura , Miocitos Cardíacos/fisiología , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Adhesión Celular/genética , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Biología Computacional , Impedancia Eléctrica , Uniones Comunicantes/fisiología , Cobayas , Humanos , Ratones , Modelos Cardiovasculares , Miocitos Cardíacos/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.5/genética , Técnicas de Placa-Clamp , Péptidos/química , Sodio/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
18.
Neuroscience ; 344: 89-101, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28039042

RESUMEN

The firing pattern of individual neurons is an important element for information processing and storing. During the first weeks of development, there is a transitional period during which CA1 pyramidal neurons display burst-spiking behavior in contrast to the adult regular-firing pattern. Spike after-depolarizations (ADPs) constitute a major factor underlying burst-spiking behavior. Using current-clamp recordings, we studied ADP waveforms and firing patterns in CA1 pyramidal neurons of Wistar rats from 9 to 19 postnatal days (P9-19). The percentage of burst-spiking neurons increased up to P16, in correlation with the emergence of an active component in the ADP. The application of low-voltage-activated (LVA) calcium channel blockers such as nickel or mibefradil suppressed the generation of the active ADP component and burst-spiking behavior. In agreement with the development of the ADP waveform and burst-spiking behavior, voltage-clamp experiments in dissociated pyramidal neurons showed an increase in the LVA calcium current in P16-19 vs P9-12. Finally, we found that a reduction of extracellular calcium levels decreases the percentage of burst-spiking cells due to a reduction in the active component of the ADP. We conclude that a major contribution of LVA calcium channels to ADP determines the bursting capability of CA1 pyramidal neurons during a transitional postnatal period in contrast to adulthood.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/crecimiento & desarrollo , Canales de Calcio/metabolismo , Calcio/metabolismo , Espacio Extracelular/metabolismo , Células Piramidales/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Espacio Extracelular/efectos de los fármacos , Mibefradil/farmacología , Níquel/farmacología , Células Piramidales/efectos de los fármacos , Ratas Wistar , Técnicas de Cultivo de Tejidos
19.
Circ Res ; 119(8): 944-55, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27572487

RESUMEN

RATIONALE: Disruption in subcellular targeting of Ca(2+) signaling complexes secondary to changes in cardiac myocyte structure may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure (HF) and certain arrhythmias. OBJECTIVE: To explore microdomain-targeted remodeling of ventricular L-type Ca(2+) channels (LTCCs) in HF. METHODS AND RESULTS: Super-resolution scanning patch-clamp, confocal and fluorescence microscopy were used to explore the distribution of single LTCCs in different membrane microdomains of nonfailing and failing human and rat ventricular myocytes. Disruption of membrane structure in both species led to the redistribution of functional LTCCs from their canonical location in transversal tubules (T-tubules) to the non-native crest of the sarcolemma, where their open probability was dramatically increased (0.034±0.011 versus 0.154±0.027, P<0.001). High open probability was linked to enhance calcium-calmodulin kinase II-mediated phosphorylation in non-native microdomains and resulted in an elevated ICa,L window current, which contributed to the development of early afterdepolarizations. A novel model of LTCC function in HF was developed; after its validation with experimental data, the model was used to ascertain how HF-induced T-tubule loss led to altered LTCC function and early afterdepolarizations. The HF myocyte model was then implemented in a 3-dimensional left ventricle model, demonstrating that such early afterdepolarizations can propagate and initiate reentrant arrhythmias. CONCLUSIONS: Microdomain-targeted remodeling of LTCC properties is an important event in pathways that may contribute to ventricular arrhythmogenesis in the settings of HF-associated remodeling. This extends beyond the classical concept of electric remodeling in HF and adds a new dimension to cardiovascular disease.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Canales de Calcio Tipo L/fisiología , Insuficiencia Cardíaca/fisiopatología , Microdominios de Membrana/fisiología , Miocitos Cardíacos/fisiología , Adulto , Anciano , Animales , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/etiología , Células Cultivadas , Femenino , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/etiología , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley
20.
Biophys J ; 110(10): 2252-65, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27224490

RESUMEN

Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía de Sonda de Barrido/métodos , Adulto , Animales , Células Cultivadas , Medios de Cultivo , Diseño de Equipo , Femenino , Células HeLa , Humanos , Imagenología Tridimensional/instrumentación , Masculino , Ratones , Micromanipulación/instrumentación , Micromanipulación/métodos , Microscopía Electrónica de Rastreo , Microscopía de Sonda de Barrido/instrumentación , Nanotecnología , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/métodos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...