Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Syst Neurosci ; 17: 1154014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388941

RESUMEN

Substance Use Disorder (SUD) involves emotional, cognitive, and motivational dysfunction. Long-lasting molecular and structural changes in brain regions functionally and anatomically linked to the cerebellum, such as the prefrontal cortex, amygdala, hippocampus, basal ganglia, and ventral tegmental area, are characteristic of SUD. Direct and indirect reciprocal connectivity between the cerebellum and these brain regions can explain cerebellar roles in Pavlovian and reinforcement learning, fear memory, and executive functions. It is increasingly clear that the cerebellum modulates brain functions altered in SUD and other neuropsychiatric disorders that exhibit comorbidity with SUD. In the present manuscript, we review and discuss this evidence and present new research exploring the role of the cerebellum in cocaine-induced conditioned memory using chemogenetic tools (designer receptor exclusively activated by designer drug, DREADDs). Our preliminary data showed that inactivation of a region that includes the interposed and lateral deep cerebellar nuclei reduces the facilitating effect of a posterior vermis lesion on cocaine-induced preference conditioning. These findings support our previous research and suggest that posterior vermis damage may increase drug impact on the addiction circuitry by regulating activity in the DCN. However, they raise further questions that will also be discussed.

2.
Neuropharmacology ; 218: 109210, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985392

RESUMEN

Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.


Asunto(s)
Cocaína , Corteza Cerebelosa , Cerebelo/metabolismo , Condroitina ABC Liasa/metabolismo , Condroitina ABC Liasa/farmacología , Cocaína/metabolismo , Cocaína/farmacología , Matriz Extracelular/metabolismo , Neuronas/metabolismo
3.
Psychopharmacology (Berl) ; 238(4): 1059-1068, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33388819

RESUMEN

RATIONALE: The probability of structural remodeling in brain circuits may be modulated by molecules of perineuronal nets (PNNs) that restrict neuronal plasticity to stabilize circuits. Animal research demonstrates that addictive drugs can remodel PNNs in different brain regions, including the cerebellum. OBJECTIVE: This study aimed to investigate the effects of short versus extended access to cocaine self-administration on PNN expression around Golgi interneurons in the cerebellar cortex after different periods of abstinence. METHODS: After 1 week of training (2 h/day), Sprague-Dawley rats self-administered cocaine daily for 20 days under short (ShA) or extended (LgA) access. PNN expression in the cerebellum was assessed after 1 day, 7 days, and 28 days of forced abstinence. PNNs were immunolabeled using Wisteria floribunda agglutinin (WFA) and captured by confocal microscopy. RESULTS: WFA intensity increased in PNN-bearing Golgi neurons over the abstinence period and a higher proportion of more intense PNNs were formed throughout the first month of abstinence. After the first 24 h of cocaine abstinence, however, we found a reduction in WFA intensity in the cerebellar cortex of rats with ShA to cocaine as compared to naïve animals. When comparing with naïve rats, LgA rats showed consistent PNN upregulation at 28 days of cocaine abstinence. CONCLUSIONS: Our results suggest that cocaine self-administration produces modifications in PNN that enhance conditions for synaptic plasticity in the cerebellar cortex. These modifications are revealed shortly after the cessation of drug intake but PNNs become more intense during protracted abstinence in the LgA group, pointing to the stabilization of drug-induced synaptic changes. These findings indicate that extended access to cocaine self-administration dynamically regulates conditions for plasticity in the cerebellum during abstinence.


Asunto(s)
Corteza Cerebelosa/fisiopatología , Trastornos Relacionados con Cocaína/fisiopatología , Red Nerviosa/fisiopatología , Síndrome de Abstinencia a Sustancias/fisiopatología , Animales , Cocaína , Interneuronas , Masculino , Plasticidad Neuronal , Ratas , Ratas Sprague-Dawley , Autoadministración
4.
Front Behav Neurosci ; 13: 99, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133834

RESUMEN

Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA