Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168864, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040365

RESUMEN

Sustainable exploitation of groundwater resources for drinking water provision in rural communities in sub-Sahara Africa remains elusive due to the limited knowledge of these hydrogeological systems. This is exacerbated by poor maintenance of existing infrastructure, limited technical capacity, the socio-economic characteristics of the area and poor governance. Assessing the likelihood of a given individual user experiencing water shortage calls for an interdisciplinary approach. After a preliminary multifactorial analysis incorporating a range of variables from technical to societal, it was found that most of the overall risk of water shortage for an individual household could be attributed to three factors; (1) Proximity, specified as the distance to the closest supply well (determined by geographical parameters), (2) Availability of good quality water in the wells (determined by hydrogeological understanding and modelling), and (3) Sustainability (determined by socio-technical and socio-economic parameters). In the latter case, a distinction was made between hardware functionality- the water point's performance considering a sufficient yield and reliability through time- and software functionality, based on a combination of socioeconomic data from surveys and analysed using Multiple Factor Analysis (MFA). All three factors are eventually mapped onto indicators in the range of [0-1] and then represented in a Geographical Information System based on the partition of the entire spatial domain (e.g., counties, villages, and neighbourhoods). The three indicators are then combined in a final index based on the product of the three factors, thus mapping time-dependent overall risk and allowing the assessment of temporal risk-evolution scenarios. The methodology is applied to Kwale County, Kenya, where community handpumps and groundwater points comprise the main water supply system. Apart from mapping the present situation, the methodology is finally used to assess the impact of future climate scenarios.

2.
Sci Total Environ ; 904: 166510, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619737

RESUMEN

Reliable monitoring of microbial and water quality parameters in freshwater ecosystems (either natural or human-made) is of capital importance for improving both the management of water resources and the assessment of microbially-driven bio-geo-chemical processes. In this context, bioelectrochemical systems (BES), such as microbial three-cell electrodes (M3C), are very promising devices for their use as biosensors. However, current experiences on the use of BES-based devices for biosensing purposes are almost exclusively limited to water-saturated environments. This limitation hampers the use of this technology for a wider range of applications where the biosensor may work discontinuously (such as discontinuously saturated ecosystems). Discontinuous operation of M3C-based biosensors creates an electric current peak immediately after the reconnection of the system due to electron accumulation, in a process known as biocapacitance. The present work aimed at quantifying the bioindication potential of biocapacitance for the assessment of key ecosystem parameters such as microbial metabolic activity and biomass, as well as organic matter concentration. Significant linear regression coefficients (R2 > 0.9) were found for all combinations of parameters tested. Moreover, for most of the ecological parameters assessed, an electric charge accumulation of 1-5 min (biocapacitance elapsed time) and discharge of 5 min was enough to get reliable information. In conclusion, we have demonstrated for the first time that biocapacitance in M3C-based biosensors can be used as a proxy parameter for the assessment of microbial activity, microbial biomass and organic matter concentration in a model nature-based ecosystem.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Humanos , Ecosistema , Electricidad
3.
Environ Sci Technol ; 57(33): 12398-12410, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37558209

RESUMEN

Contamination of groundwater with pharmaceutical active compounds (PhACs) increased over the last decades. Potential pathways of PhACs to groundwater include techniques such as irrigation, managed aquifer recharge, or bank filtration as well as natural processes such as losing streams of PhACs-loaded source waters. Usually, these systems are characterized by redox-active zones, where microorganisms grow and become immobilized by the formation of biofilms, structures that colonize the pore space and decrease the infiltration capacities, a phenomenon known as bioclogging. The goal of this work is to gain a deeper understanding of the influence of soil biofilms on hydraulic conductivity reduction and the fate of PhACs in the subsurface. For this purpose, we selected three PhACs with different physicochemical properties (carbamazepine, diclofenac, and metoprolol) and performed batch and column experiments using a natural soil, as it is and with the organic matter removed, under different biological conditions. We observed enhanced sorption and biodegradation for all PhACs in the system with higher biological activity. Bioclogging was more prevalent in the absence of organic matter. Our results differ from works using artificial porous media and thus reveal the importance of utilizing natural soils with organic matter in studies designed to assess the role of soil biofilms in bioclogging and the fate of PhACs in soils.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Suelo/química , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Biodegradación Ambiental , Preparaciones Farmacéuticas , Biopelículas
4.
J Contam Hydrol ; 251: 104074, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36126368

RESUMEN

Biologically mediated degradation of organic compounds in porous media is a complex mathematical problem, described by a non-linear differential equation. The organic compound gets in contact with the biomass, and an enzyme-catalysed reaction takes place. The net result is that part of the parent compound degrades into some daughter product, while some of the organic carbon is used for microbial growth. The rate of biomass growth in the presence of a limiting nutrient supply is usually modelled with the experimentally derived Monod equation, i.e., it is proportional to the actual existing biomass multiplied by a factor that is non-linear in terms of available organic matter. This non-linearity in the degradation equation implies a strong difficulty in directly implementing a numerical solution within a fully Lagrangian framework, and thus, numerical solutions have traditionally been sought in either an Eulerian, or else an Eulerian-Lagrangian framework. Here we pursue a fully Lagrangian solution to the problem. First, the Monod empirical equation is formulated as the outcome of a two-step reaction; while the approach is less general than other derivations existing in the literature based on a full understanding of the thermodynamics of the process, it allows two things: 1) providing some physical meaning to the actual parameters in the Monod equation, and more interestingly, 2) formulating a methodology for the solution of the degradation equation incorporating Monod kinetics by means of a particle tracking formulation. For the latter purpose, both reactants and biomass are represented by particles, and their location at any given time is represented by a kernel that accounts for the uncertainty in the actual physical location. By solving the reaction equation in a kernel framework, we can reproduce the Monod kinetics and, as a particular result in the case no biomass growth is allowed, the Michaelis-Menten kinetics. The methodology proposed is then successfully applied to reproduce two studies of microbially induced degradation of organic compounds in porous media, first, the observed kinetics of Pseudomonas putida F1 in batch reactors while growing on benzene, toluene and phenol, and second, the column study of carbon tetrachloride biodegradation by the denitrifying bacterium Pseudomonas Stutzeri KC.


Asunto(s)
Benceno , Tolueno , Cinética , Biodegradación Ambiental , Biomasa
5.
Sci Total Environ ; 833: 155165, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35413352

RESUMEN

Microbial activity and biomass are important factors that determine nutrient and carbon fluxes in freshwater ecosystems and, therefore are also related to both water quality and climate change induced stressors. This study aimed at assessing the feasibility of a power assisted Microbial Fuel Cell (MFC)-based biosensors for the continuous monitoring of microbial activity and biomass concentrations in saturated freshwater ecosystems. For this purpose, four lab-scale reactors were constructed and operated for 30 weeks. Reactors were fed with four different organic matter concentrations to promote a suite of microbial activity and biomass conditions. The reactors consisted of 3.8 L PVC vessels filled with 23 extractable gravel- sockets, used for microbial activity and biomass assessment, and 1 MFC granular-graphite socket, for biosensing assessment. Microbial activity was determined by the ATP content and the hydrolytic enzymatic activity, and the biomass content was assessed as the volatile solids attached to the gravel. Very significant linear relationships could be established between the parameters studied and the current density produced by the MFC with a very short detection time: 10 min for the ATP content (R2 = 0.88) and 1 h for the enzymatic activity (R2 = 0.78) and biomass (R2 = 0.74). Moreover, the power assisted MFC-based biosensing tool demonstrated to be functional after a long operation time and under a wide range of organic loading conditions. Overall, the results highlight the feasibility to develop a power assisted MFC-based biosensor for on-line monitoring of the microbial activity and biomass of a given ecosystem (either natural or artificial) even in remote locations.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Adenosina Trifosfato , Biomasa , Técnicas Biosensibles/métodos , Ecosistema , Electrodos , Agua Dulce
6.
Chemosphere ; 287(Pt 4): 132383, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34592205

RESUMEN

Treatment wetlands (TW) operated as bioelectrochemical systems (BES-TW) provide a higher degree of treatment than conventional TW. Yet, the fundamental processes or mechanisms for the envisaged better performance of BES-TW over conventional TW remains poorly understood. This work aimed to determine to which extent microbial activity enhancement could be the reason behind this treatment performance increase. To this purpose, pilot-scale horizontal sub-surface flow BES-TW operated under three different configurations were continuously fed with real urban wastewater. BES-TW were evaluated for COD and ammonia removal efficiency, and two techniques of microbial activity assessment were applied. Configurations, tested in duplicate, were: control TWs without electrodes (C-TW), TWs operated as microbial fuel cells (MFC-TW), and TWs operated as microbial electrolysis cells (MEC-TW). Microbial activity was assessed by measuring the enzymatic activity (EA) (FDA hydrolysis technique) and the aerobic activity (AA) (estimated through respirometry). Results showed that BES-TW outperformed C-TW in terms of both microbial activity enhancement and contaminants removal efficiency, especially in the case of MEC-TW. More precisely, this configuration showed an average improvement of 17%, and 56% in COD removal and EA efficiencies, respectively, compared to C-TW. Regarding AA activity, although MEC-TW seemed to outperform the rest of the configurations, differences were not statistically significant. This work demonstrates that TWs operated as BES increase the overall enzymatic activity of the treatment bed and this, in turn, is the leading cause to a higher degree of treatment performance.


Asunto(s)
Fuentes de Energía Bioeléctrica , Humedales , Electrodos , Electrólisis , Aguas Residuales/análisis
7.
Sci Total Environ ; 770: 145490, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736357

RESUMEN

Managed Aquifer Recharge (MAR) is a key strategy to increase freshwater resources in many regions facing water scarcity. MAR issues are related to both quantity and quality of the infiltrating water. In most countries, very high quality of the infiltrating water is required, to limit the impact on the aquifer geochemistry. In this paper, the possibility of injecting water of lower quality in the aquifer and letting the biogeochemical reactions take place in order to enhance its quality is explored. Here, we present the fate of nutrients (C, N) in the biogeochemical system of a reactive barrier formed by mixture of different proportions of sand and compost, supplied with treated wastewater to mimic MAR. An integrated conceptual model involving the nutrient cycles and biomass dynamics (auto- and heterotrophic) was developed, and then tested with a number of solute transport experiments in columns with different compost fraction in the column filling. The model incorporated both saturation and inhibition processes (regarding the nutrients and their byproducts) to provide a comprehensive picture of the nutrient dynamics within the column. The model developed (three if considering the 3 column setups) allowed to discriminate the processes that govern the fate of nutrients in relation with the compost enhancing long-term nutrient degradation, yet hindering hydraulic parameters that affect infiltration rates.

8.
Environ Sci Technol ; 54(19): 12092-12101, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32897067

RESUMEN

Redox potential (Eh) measurements are widely used as indicators of the dominant reduction-oxidation reactions occurring underground. Yet, Eh data are mostly used in qualitative terms, as actual values cannot be used to distinguish uniquely the dominant redox processes at a sampling point and should therefore be combined with a detailed geochemical characterization of water samples. In this work, we have intensively characterized the redox potential of the first meter of soil in an infiltration pond recharged with river water using a set of in situ sensors measuring every 12 min during a 1 year period. This large amount of data combined with hydrogeochemical campaigns allowed developing a reactive transport model capable of reproducing the redox potential in space and time together with the site hydrochemistry. Our results showed that redox processes were mainly driven by the amount of sedimentary organic matter in the system as well as by seasonal variation of temperature. As a subsidiary result, our work emphasizes the need to use a fully coupled model of flow, heat transport, solute transport, and the geochemical reaction network to fully reproduce the Eh observations in the topsoil.


Asunto(s)
Calor , Estanques , Agua Dulce , Oxidación-Reducción , Suelo
9.
J Contam Hydrol ; 228: 103556, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31727265

RESUMEN

Groundwater is the major source of drinking water in most rural areas in developing countries. This resource is threatened by the potential presence of faecal bacteria coming from a variety of sources and pollution paths, the former including septic tanks, landfills, and crop irrigation with untreated, or insufficiently treated, sewage effluent. Accurately assessing the microbiological safety of water resources is essential to reduce diseases caused by waterborne faecal exposure. The objective of this study is to discern which are the most significant sanitary, hydrogeological, geochemical, and physical variables influencing the presence of faecal bacterial pollution in groundwater by means of statistical multivariate analyses. The concentration of Escherichia coli was measured in a number of waterpoints of different types in a rural area located in the coast of Kenya, assessing both a dry and a wet season. The results from the analyses reaffirm that the design of the well and their maintenance, the distance to latrines, and the geological structure of the waterpoints are the most significant variables affecting the presence of E. coli. Most notably, the presence of faecal bacteria in the study area correlates negatively with the concentration of ion Na+ (being an indirect indicator of fast recharge in the study site), and also negatively with the length of the water column inside the well.


Asunto(s)
Escherichia coli , Agua Subterránea , Bacterias , Países en Desarrollo , Monitoreo del Ambiente , Microbiología del Agua
10.
J Environ Manage ; 237: 332-343, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30818236

RESUMEN

Subsurface microorganisms must deal with quite extreme environmental conditions. The lack of light, oxygen, and potentially nutrients are the main environmental stresses faced by subsurface microbial communities. Likewise, environmental disruptions providing an unbalanced positive input of nutrients force microorganisms to adapt to varying conditions, visible in the changes in microbial community diversity. In order to test microbial community adaptation to environmental changes, we performed a study in a surface Managed Aquifer Recharge facility, consisting of a settlement basin (two-day residence time) and an infiltration pond. Data on groundwater hydrochemistry, soil texture, and microbial characterization was compiled from surface water, groundwater, and soil samples at two distinct recharge operation conditions. Multivariate statistics by means of Principal Component Analysis (PCA) was the technique used to map the relevant dimensionality reduced combinations of input variables that properly describe the system behavior. The methodology selected allows including variables of different nature and displaying very different range values. Strong differences in the microbial assemblage under recharge conditions were found, coupled to hydrochemistry and grain-size distribution variables. Also, some microbial groups displayed correlations with either carbon or nitrogen cycles, especially showing abundant populations of denitrifying bacteria in groundwater. A significant correlation was found between Methylotenera mobilis and the concentrations of NO3 and SO4, and also between Vogesella indigofera and the presence of DOC in the infiltrating water. Also, microbial communities present at the bottom of the pond correlated with representative descriptors of soil grain size distribution.


Asunto(s)
Agua Subterránea , Microbiota , Bacterias , Suelo , Calidad del Agua
11.
J Contam Hydrol ; 221: 35-49, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30638639

RESUMEN

Contaminated sites pose a significant threat to groundwater resources. The resources that can be allocated by water regulators for site investigation and cleanup are limited compared to the large number of contaminated sites. Numerical transport models of individual sites require large amounts of data and are labor intensive to set up, and thus they are likely to be too expensive to be useful in the management of thousands of contaminated sites. Therefore, simple tools based on analytical solutions of contaminant transport models are widely used to assess (at an early stage) whether a site might pose a threat to groundwater. We present a tool consisting of five different models, representing common geological settings, contaminant pathways, and transport processes. The tool employs a simplified approach for preliminary, conservative, fast and inexpensive estimation of the contamination levels of aquifers. This is useful for risk assessment applications or to select and prioritize the sites, which should be targeted for further investigation. The tool is based on steady-state semi-analytical models simulating different contaminant transport scenarios from the source to downstream groundwater, and includes both unsaturated and saturated transport processes. The models combine existing analytical solutions from the literature for vertical (from the source to the top of the aquifer) and horizontal (within the aquifer) transport. The effect of net recharge causing a downward migration and an increase of vertical dispersion and dilution of the plume is also considered. Finally, we illustrate the application of the tool for a preliminary assessment of two contaminated sites in Denmark and compare the model results with field data. The comparison shows that a first preliminary assessment with conservative, and often non-site specific parameter selection, is qualitatively consistent with broad trends in observations and provides a conservative estimate of contamination.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Dinamarca , Contaminación Ambiental , Modelos Teóricos , Medición de Riesgo , Movimientos del Agua
12.
Water Res ; 105: 540-550, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27676388

RESUMEN

Degradation of emerging organic compounds in saturated porous media is usually postulated as following simple low-order models. This is a strongly oversimplified, and in some cases plainly incorrect model, that does not consider the fate of the different metabolites. Furthermore, it does not account for the reversibility in the reaction observed in a few emerging organic compounds, where the parent is recovered from the metabolite. One such compound is the antibiotic sulfamethoxazole (SMX). In this paper, we first compile existing experimental data to formulate a complete model for the degradation of SMX in aquifers subject to varying redox conditions, ranging from aerobic to iron reducing. SMX degrades reversibly or irreversibly to a number of metabolites that are specific of the redox state. Reactions are in all cases biologically mediated. We then propose a mathematical model that reproduces the full fate of dissolved SMX subject to anaerobic conditions and that can be used as a first step in emerging compound degradation modeling efforts. The model presented is tested against the results of the batch experiments of Barbieri et al. (2012) and Nödler et al. (2012) displaying a non-monotonic concentration of SMX as a function of time under denitrification conditions, as well as those of Mohatt et al. (2011), under iron reducing conditions.


Asunto(s)
Sulfametoxazol/metabolismo , Contaminantes Químicos del Agua , Desnitrificación , Agua Subterránea , Oxidación-Reducción
13.
J Hazard Mater ; 263 Pt 1: 197-206, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24011618

RESUMEN

We study the time dependent interaction between hydrogeological and exposure parameters in daily dose predictions due to exposure of humans to groundwater contamination. Dose predictions are treated stochastically to account for an incomplete hydrogeological and geochemical field characterization, and an incomplete knowledge of the physiological response. We used a nested Monte Carlo framework to account for uncertainty and variability arising from both hydrogeological and exposure variables. Our interest is in the temporal dynamics of the total dose and their effects on parametric uncertainty reduction. We illustrate the approach to a HCH (lindane) pollution problem at the Ebro River, Spain. The temporal distribution of lindane in the river water can have a strong impact in the evaluation of risk. The total dose displays a non-linear effect on different population cohorts, indicating the need to account for population variability. We then expand the concept of Comparative Information Yield Curves developed earlier (see de Barros et al. [29]) to evaluate parametric uncertainty reduction under temporally variable exposure dose. Results show that the importance of parametric uncertainty reduction varies according to the temporal dynamics of the lindane plume. The approach could be used for any chemical to aid decision makers to better allocate resources towards reducing uncertainty.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Agua Subterránea/análisis , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Adulto , Niño , Fenómenos Geológicos , Hexaclorociclohexano/análisis , Humanos , Método de Montecarlo , Plaguicidas/análisis , Medición de Riesgo , Ríos , España , Factores de Tiempo , Incertidumbre
14.
Chemosphere ; 89(11): 1272-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22682361

RESUMEN

The fate of the three environmentally relevant ß-blockers atenolol, metoprolol and propranolol has been studied in batch experiments involving aquifer material and nitrate reducing conditions. Results from the about 90 d long tests indicate that abiotic processes, most likely sorption, jointly with biotransformation to atenololic acid were responsible for the 65% overall removal observed for atenolol. Zero order kinetics, typical of enzyme-limited reactions, controlled the transformation of this beta blocker to its corresponding carboxylic acid. The mass balance evidences that no mineralization of atenolol occurs in the biotic experiment and that atenololic acid is more stable than its parent compound under the studied conditions. This finding stresses the importance of considering atenololic acid as target compound in the environmental studies on the fate of atenolol. For metoprolol and propranolol the results from the experiment suggest a slower sorption to be the dominant removal process, which led to final decreases in concentrations of 25-30% and 40-45%, respectively. Overall, the removals observed in the experiments suggest that subsurface processes potentially constitute an alternative water treatment for the target beta-blockers, when compared to the removals reported for conventional wastewater treatment plants.


Asunto(s)
Antagonistas Adrenérgicos beta/análisis , Agua Subterránea/química , Nitratos/química , Contaminantes Químicos del Agua/análisis , Antagonistas Adrenérgicos beta/química , Atenolol/análisis , Atenolol/química , Monitoreo del Ambiente , Cinética , Metoprolol/análisis , Metoprolol/química , Modelos Químicos , Oxidación-Reducción , Propranolol/análisis , Propranolol/química , Contaminantes Químicos del Agua/química
15.
Environ Sci Pollut Res Int ; 19(4): 918-33, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22544550

RESUMEN

INTRODUCTION: The Consolider-Ingenio 2010 project SCARCE, with the full title "Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change" aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. METHODS: The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. RESULTS: Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.


Asunto(s)
Cambio Climático , Actividades Humanas , Ríos , Conservación de los Recursos Naturales , Ecosistema , Ambiente , Sedimentos Geológicos , Humanos , Proyectos de Investigación , España , Calidad del Agua
16.
Sci Total Environ ; 426: 256-63, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22534360

RESUMEN

Soil-aquifer processes have proven to work as a natural treatment for the attenuation of numerous contaminants during artificial recharge of groundwater. Nowadays, significant scientific effort is being devoted to understanding the fate of pharmaceuticals in subsurface environments, and to verify if such semipersistent organic micropollutants could also be efficiently removed from water. In this context we carried out a series of batch experiments involving aquifer material, selected drugs (initial concentration of 1 µg/L and 1 mg/L), and denitrifying conditions. Diclofenac and sulfamethoxazole exhibited an unreported and peculiar behavior. Their concentrations consistently dropped in the middle of the tests but recovered toward the end, which suggest a complex effect of denitrifying conditions on aromatic amines. The transformation products Nitro-Diclofenac and 4-Nitro-Sulfamethoxazole were detected in the biotic experiments, while nitrite was present in the water. Their concentrations developed almost opposite to those of their respective parent compounds. We conjecture that this temporal and reversible effect of denitrifying conditions on the studied aromatic amines could have significant environmental implications, and could explain at least partially the wide range of removals in subsurface environments reported in literature for DCF and SMX, as well as some apparent discrepancies on SMX behavior.


Asunto(s)
Antiinfecciosos/química , Antiinflamatorios no Esteroideos/química , Desnitrificación , Diclofenaco/química , Sulfametoxazol/química , Contaminantes Químicos del Agua/química , Antiinfecciosos/análisis , Antiinflamatorios no Esteroideos/análisis , Diclofenaco/análisis , Agua Subterránea/química , Modelos Químicos , Sulfametoxazol/análisis , Contaminantes Químicos del Agua/análisis
17.
J Contam Hydrol ; 126(3-4): 330-45, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22115096

RESUMEN

The natural processes occurring in subsurface environments have proven to effectively remove a number of organic pollutants from water. The predominant redox conditions revealed to be one of the controlling factors. However, in the case of organic micropollutants the knowledge on this potential redox-dependent behavior is still limited. Motivated by managed aquifer recharge practices microcosm experiments involving aquifer material, settings potentially feasible in field applications, and organic micropollutants at environmental concentrations were carried out. Different anaerobic redox conditions were promoted and sustained in each set of microcosms by adding adequate quantities of electron donors and acceptors. Whereas denitrification and sulfate-reducing conditions are easily achieved and maintained, Fe- and Mn-reduction are strongly constrained by the slower dissolution of the solid phases commonly present in aquifers. The thorough description and numerical modeling of the evolution of the experiments, including major and trace solutes and dissolution/precipitation of solid phases, have been proven necessary to the understanding of the processes and closing the mass balance. As an example of micropollutant results, the ubiquitous beta-blocker atenolol is completely removed in the experiments, the removal occurring faster under more advanced redox conditions. This suggests that aquifers constitute a potentially efficient alternative water treatment for atenolol, especially if adequate redox conditions are promoted during recharge and long enough residence times are ensured.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/análisis , Atenolol/análisis , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Antagonistas de Receptores Adrenérgicos beta 1/química , Atenolol/química , Biodegradación Ambiental , Monitoreo del Ambiente , Sedimentos Geológicos/química , Hierro/química , Manganeso/química , Oxidación-Reducción , Sulfatos/química , Contaminantes Químicos del Agua/química
18.
J Contam Hydrol ; 101(1-4): 1-13, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18799231

RESUMEN

We analyze the relative importance of the selection of (1) the geostatistical model depicting the structural heterogeneity of an aquifer, and (2) the basic processes to be included in the conceptual model, to describe the main aspects of solute transport at an experimental site. We focus on the results of a forced-gradient tracer test performed at the "Lauswiesen" experimental site, near Tübingen, Germany. In the experiment, NaBr is injected into a well located 52 m from a pumping well. Multilevel breakthrough curves (BTCs) are measured in the latter. We conceptualize the aquifer as a three-dimensional, doubly stochastic composite medium, where distributions of geomaterials and attributes, e.g., hydraulic conductivity (K) and porosity (phi), can be uncertain. Several alternative transport processes are considered: advection, advection-dispersion and/or mass-transfer between mobile and immobile regions. Flow and transport are tackled within a stochastic Monte Carlo framework to describe key features of the experimental BTCs, such as temporal moments, peak time, and pronounced tailing. We find that, regardless the complexity of the conceptual transport model adopted, an adequate description of heterogeneity is crucial for generating alternative equally likely realizations of the system that are consistent with (a) the statistical description of the heterogeneous system, as inferred from the data, and (b) salient features of the depth-averaged breakthrough curve, including preferential paths, slow release of mass particles, and anomalous spreading. While the available geostatistical characterization of heterogeneity can explain most of the integrated behavior of transport (depth-averaged breakthrough curve), not all multilevel BTCs are described with equal success. This suggests that transport models simply based on integrated measurements may not ensure an accurate representation of many of the important features required in three-dimensional transport models.


Asunto(s)
Movimientos del Agua , Análisis por Conglomerados , Diseño de Equipo , Cinética , Modelos Estadísticos , Modelos Teóricos , Método de Montecarlo , Análisis Multivariante , Procesos Estocásticos , Factores de Tiempo , Contaminantes del Agua/análisis , Abastecimiento de Agua
19.
Ground Water ; 46(1): 133-43, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18181872

RESUMEN

A novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The method is based on the analysis of the first and second derivatives of the drawdown with respect to log time for the estimation of the flow parameters. Like commonly used analysis procedures, such as the type-curve approach developed by Walton (1962) and the inflection point method developed by Hantush (1956), the mathematical development of the DIP method is based on the assumption of homogeneity of the leaky aquifer layers. However, contrary to the two methods developed by Hantush and Walton, the new method does not need any fitting process. In homogeneous media, the two classic methods and the one proposed here provide exact results for transmissivity, storativity, and leakage factor when aquifer storage is neglected and the recharging aquifer is unperturbed. The real advantage of the DIP method comes when applying all methods independently to a test in a heterogeneous aquifer, where each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. Therefore, the methods are complementary and not competitive. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.


Asunto(s)
Modelos Teóricos , Movimientos del Agua , Abastecimiento de Agua , Permeabilidad
20.
J Contam Hydrol ; 57(1-2): 129-45, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12143990

RESUMEN

In modeling transport within naturally heterogeneous aquifers, it is usually assumed that the transport equations valid at local scales can also be applied at larger scales. At larger scales, the heterogeneous domain is represented by an equivalent homogeneous medium. Convergent-flow tracer tests constitute one of the most frequently used field tests to estimate effective input parameters of equivalent homogeneous aquifers. Traditionally, statistical approaches applied to groundwater flow and solute transport have provided tools to estimate these equivalent parameters. These approaches are based on a number of simplifications including the assumption that the point transmissivity values follow a multilog-normal random function. Several investigators have found that this assumption may not be valid in many field cases. In order to study the applicability of the equivalent homogeneous formulation in a nontraditional stochastic field, a number of experimental and numerical studies were conducted. The results are used to determine the apparent values of porosity and dispersivity that would be obtained if convergent-flow tracer tests were conducted in a deterministically generated heterogeneous transmissivity field displaying anisotropy in the correlation structure. It is shown that in this particular heterogeneous media, apparent porosity strongly depends on connectivity rather than on transmissivity. This dependence on connectivity questions the theoretical results obtained in continuum equivalent fields to estimate effective porosity.


Asunto(s)
Modelos Teóricos , Suelo , Movimientos del Agua , Abastecimiento de Agua , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...