Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36978996

RESUMEN

Despite its robust proteopathic nature, the spatiotemporal signature of disrupted protein modules in sporadic Alzheimer's disease (AD) brains remains poorly understood. This considered oxidative stress contributes to AD progression and early intervention with coenzyme Q10 or its reduced form, ubiquinol, delays the progression of the disease. Using MALDI-MSI and functional bioinformatic analysis, we have developed a protocol to express how deregulated protein modules arise from hippocampus and cortex in the AD mice model 3xTG-AD in an age-dependent manner. This strategy allowed us to identify which modules can be efficiently restored to a non-pathological condition by early intervention with ubiquinol. Indeed, an early deregulation of proteostasis-related protein modules, oxidative stress and metabolism has been observed in the hippocampus of 6-month mice (early AD) and the mirrored in cortical regions of 12-month mice (middle/late AD). This observation has been validated by IHC using mouse and human brain sections, suggesting that these protein modules are also affected in humans. The emergence of disrupted protein modules with AD signature can be prevented by early dietary intervention with ubiquinol in the 3xTG-AD mice model.

2.
Life (Basel) ; 12(9)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36143453

RESUMEN

Current efforts to find novel treatments that counteract multiple sclerosis (MS) have pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising potential to achieve this purpose. However, disadvantages such as poor survival, differentiation, and integration into the target tissue have limited its application. A series of recent studies have focused on the cell secretome, showing it to provide the most benefits of cell therapy. Exosomes are a key component of the cell secretome, participating in the transfer of bioactive molecules. These nano-sized vesicles offer many therapeutical advantages, such as the capacity to cross the blood-brain barrier, an enrichable cargo, and a customizable membrane. Moreover, integrating of biomaterials into exosome therapy could lead to new tissue-specific therapeutic strategies. In this work, the use of exosomes and their integration with biomaterials is presented as a novel strategy in the treatment of MS.

3.
Life (Basel) ; 12(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35454965

RESUMEN

Multiple sclerosis (MS) is a chronic degenerative autoimmune disease of the central nervous system that causes inflammation, demyelinating lesions, and axonal damage and is associated with a high rate of early-onset disability. Disease-modifying therapies are used to mitigate the inflammatory process in MS but do not promote regeneration or remyelination; cell therapy may play an important role in these processes, modulating inflammation and promoting the repopulation of oligodendrocytes, which are responsible for myelin repair. The development of genetic engineering has led to the emergence of stable, biocompatible biomaterials that may promote a favorable environment for exogenous cells. This review summarizes the available evidence about the effects of transplantation of different types of stem cells reported in studies with several animal models of MS and clinical trials in human patients. We also address the advantages of combining cell therapy with biomaterials.

4.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34639079

RESUMEN

Oligodendrocyte precursor cell (OPC) migration is a mechanism involved in remyelination; these cells migrate from niches in the adult CNS. However, age and disease reduce the pool of OPCs; as a result, the remyelination capacity of the CNS decreases over time. Several experimental studies have introduced OPCs to the brain via direct injection or intrathecal administration. In this study, we used the nose-to brain pathway to deliver oligodendrocyte lineage cells (human oligodendroglioma (HOG) cells), which behave similarly to OPCs in vitro. To this end, we administered GFP-labelled HOG cells intranasally to experimental animals, which were subsequently euthanised at 30 or 60 days. Our results show that the intranasal route is a viable route to the CNS and that HOG cells administered intranasally migrate preferentially to niches of OPCs (clusters created during embryonic development and adult life). Our study provides evidence, albeit limited, that HOG cells either form clusters or adhere to clusters of OPCs in the brains of experimental animals.


Asunto(s)
Encéfalo/fisiología , Enfermedades Desmielinizantes/terapia , Células Precursoras de Oligodendrocitos/citología , Oligodendroglioma/química , Remielinización , Células Madre/citología , Administración Intranasal , Animales , Encéfalo/citología , Diferenciación Celular , Células Cultivadas , Humanos
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360957

RESUMEN

In recent years, the "non-autonomous motor neuron death" hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest. Mitochondria are thought to play a fundamental role in the physiopathology of ALS, as they are compromised in multiple ALS models in different cell types, and it also occurs in other neurodegenerative diseases. Our study aimed to uncover mitochondrial alterations in the sympathoadrenal system of a mouse model of ALS, from a structural, bioenergetic and functional perspective during disease instauration. We studied the adrenal chromaffin cell from mutant SOD1G93A mouse at pre-symptomatic and symptomatic stages. The mitochondrial accumulation of the mutated SOD1G93A protein and the down-regulation of optic atrophy protein-1 (OPA1) provoke mitochondrial ultrastructure alterations prior to the onset of clinical symptoms. These changes affect mitochondrial fusion dynamics, triggering mitochondrial maturation impairment and cristae swelling, with increased size of cristae junctions. The functional consequences are a loss of mitochondrial membrane potential and changes in the bioenergetics profile, with reduced maximal respiration and spare respiratory capacity of mitochondria, as well as enhanced production of reactive oxygen species. This study identifies mitochondrial dynamics regulator OPA1 as an interesting therapeutic target in ALS. Additionally, our findings in the adrenal medulla gland from presymptomatic stages highlight the relevance of sympathetic impairment in this disease. Specifically, we show new SOD1G93A toxicity pathways affecting cellular energy metabolism in non-motor neurons, which offer a possible link between cell specific metabolic phenotype and the progression of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa-1/genética , Glándulas Suprarrenales/citología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Células Cultivadas , Células Cromafines/metabolismo , Regulación hacia Abajo , GTP Fosfohidrolasas/genética , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias/ultraestructura , Mutación Missense , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/metabolismo
6.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068922

RESUMEN

INTRODUCTION: AQP4 (aquaporin-4)-immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4-IgG in cell differentiation. MATERIAL AND METHODS: We included three groups-a group of patients with AQP4-IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation. We also analyzed differentiation into different cell lines. RESULTS AND CONCLUSIONS: The effect of sera from patients with NMOSD on precursor cells differs according to the degree of differentiation, and probably affects oligodendrocyte progenitor cells from NG2 cells to a lesser extent than cells from the subventricular zone; however, the resulting oligodendrocytes may be compromised in terms of maturation and possibly limited in their ability to generate myelin. Furthermore, these cells decrease in number with age. It is very unlikely that the use of drugs favoring the migration and differentiation of oligodendrocyte progenitor cells in multiple sclerosis would be effective in the context of neuromyelitis optica, but cell therapy with oligodendrocyte progenitor cells seems to be a potential alternative.


Asunto(s)
Acuaporina 4/inmunología , Autoanticuerpos/inmunología , Diferenciación Celular , Sistema Nervioso Central/patología , Inmunoglobulina G/inmunología , Neuromielitis Óptica/inmunología , Células Precursoras de Oligodendrocitos/patología , Animales , Autoanticuerpos/sangre , Estudios de Casos y Controles , Sistema Nervioso Central/inmunología , Cerebelo/inmunología , Cerebelo/patología , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Neuromielitis Óptica/sangre , Neuromielitis Óptica/patología , Células Precursoras de Oligodendrocitos/inmunología
7.
Front Neurosci ; 13: 1444, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32063825

RESUMEN

Although the basis of Alzheimer's disease (AD) etiology remains unknown, oxidative stress (OS) has been recognized as a prodromal factor associated to its progression. OS refers to an imbalance between oxidant and antioxidant systems, which usually consist in an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which overwhelms the intrinsic antioxidant defenses. Due to this increased production of ROS and RNS, several biological functions such as glucose metabolism or synaptic activity are impaired. In AD, growing evidence links the ROS-mediated damages with molecular targets including mitochondrial dynamics and function, protein quality control system, and autophagic pathways, affecting the proteostasis balance. In this scenario, OS should be considered as not only a major feature in the pathophysiology of AD but also a potential target to combat the progression of the disease. In this review, we will discuss the role of OS in mitochondrial dysfunction, protein quality control systems, and autophagy associated to AD and suggest innovative therapeutic strategies based on a better understanding of the role of OS and proteostasis.

8.
Mol Cell Neurosci ; 92: 67-81, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29953929

RESUMEN

Structural and functional abnormalities in the cerebral microvasculature have been observed in Alzheimer's disease (AD) patients and animal models. One cause of hypoperfusion is the thickening of the cerebrovascular basement membrane (CVBM) due to increased collagen-IV deposition around capillaries. This study investigated whether these and other alterations in the cerebrovascular system associated with AD can be prevented by long-term dietary supplementation with the antioxidant ubiquinol (Ub) stabilized with Kaneka QH P30 powder containing ascorbic acid (ASC) in a mouse model of advanced AD (3 × Tg-AD mice, 12 months old). Animals were treated from prodromal stages of disease (3 months of age) with standard chow without or with Ub + ASC or ASC-containing vehicle and compared to wild-type (WT) mice. The number of ß-amyloid (Aß) plaques in the hippocampus and entorhinal cortex was higher in female than in male 3 × Tg-AD mice. Extensive regions of hypoxia were characterized by a higher plaque burden in females only. This was abolished by Ub + ASC and, to a lesser extent, by ASC treatment. Irrespective of Aß burden, increased collagen-IV deposition in the CVBM was observed in both male and female 3 × Tg-AD mice relative to WT animals; this was also abrogated in Ub + ASC- and ASC-treated mice. The chronic inflammation in the hippocampus and oxidative stress in peripheral leukocytes of 3 × Tg-AD mice were likewise reversed by antioxidant treatment. These results provide strong evidence that long-term antioxidant treatment can mitigate plasma oxidative stress, amyloid burden, and hypoxia in the AD brain parenchyma.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/uso terapéutico , Ácido Ascórbico/uso terapéutico , Placa Amiloide/tratamiento farmacológico , Ubiquinona/análogos & derivados , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Hipoxia de la Célula , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
9.
PLoS One ; 7(11): e48470, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144890

RESUMEN

The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals' life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections), eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population.


Asunto(s)
Giro Dentado/citología , Neuronas/citología , Animales , Recuento de Células , Forma de la Célula , Giro Dentado/metabolismo , Giro Dentado/ultraestructura , Fenómenos Electrofisiológicos , Femenino , Neuronas/metabolismo , Neuronas/ultraestructura , Cuerpos de Nissl/metabolismo , Cuerpos de Nissl/ultraestructura , Células Piramidales/citología , Células Piramidales/metabolismo , Conejos , Coloración y Etiquetado
10.
J Neurosci Methods ; 174(2): 194-201, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18692091

RESUMEN

Peripheral nerve grafts have shown the ability to facilitate central axonal growth and regenerate the adult central nervous system. However, the detailed description of a technique for atraumatic graft placement within the brain is lacking. We present a stereotactic procedure to implant a peripheral nerve graft within a rat's brain with minimal brain tissue damage. The procedure permits a correct graft placement joining two chosen points, and the survival and integration of the graft in the host tissue with a light glial reaction, with evidence of central axonal growth inside the graft, at least up to 8 weeks after its implantation.


Asunto(s)
Encéfalo/cirugía , Regeneración Nerviosa/fisiología , Nervio Ciático/trasplante , Técnicas Estereotáxicas , Animales , Encéfalo/ultraestructura , Microscopía Electrónica de Transmisión , Ratas
11.
Behav Neurosci ; 120(5): 1043-56, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17014256

RESUMEN

The presence of the c-Fos protein has been evidenced in the piriform cortex, subiculum, entorhinal and perirhinal cortices, and parietal and occipital cortices at different stages (Sessions 2, 4, and 6) in the acquisition of a trace conditioning in behaving rabbits. c-Fos immunostaining was also measured after a reminder (7th) session. c-Fos immunoreactivity increased significantly across conditioning on the contralateral side of the piriform, entorhinal, perirhinal, and parietal cortices as compared with the ipsilateral side of conditioned animals and the contralateral side of pseudo-conditioned ones. No difference in c-Fos immunostaining was observed between contra- and ipsilateral sides in the subiculum of conditioned animals. c-Fos production decreased significantly across conditioning but presented a noticeable bilateral increase after the reminder session in the piriform, entorhinal, perirhinal, and parietal cortices, but not in the subiculum. Peak production of c-Fos was observed after the 2nd and 7th (reminder) conditioning sessions for the piriform, entorhinal, perirhinal, and parietal cortices, and after the 4th session for the subiculum. It is proposed that different cortical areas process associative learning with different strengths and side dominances.


Asunto(s)
Aprendizaje por Asociación/fisiología , Parpadeo/fisiología , Corteza Cerebral/fisiología , Condicionamiento Clásico/fisiología , Animales , Mapeo Encefálico , Dominancia Cerebral/fisiología , Corteza Entorrinal/fisiología , Femenino , Hipocampo/fisiología , Masculino , Recuerdo Mental/fisiología , Lóbulo Occipital/fisiología , Giro Parahipocampal/fisiología , Lóbulo Parietal/fisiología , Proteínas Proto-Oncogénicas c-fos/análisis , Conejos , Corteza Somatosensorial/fisiología
12.
An Acad Bras Cienc ; 74(1): 85-104, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11960178

RESUMEN

The medial cerebral cortex of lizards, an area homologous to the hippocampal fascia dentata, shows delayed postnatal neurogenesis, i.e., cells in the medial cortex ependyma proliferate and give rise to immature neurons, which migrate to the cell layer. There, recruited neurons differentiate and give rise to zinc containing axons directed to the rest of cortical areas, thus resulting in a continuous growth of the medial cortex and its zinc-enriched axonal projection. This happens along the lizard life span, even in adult lizards, thus allowing one of their most important characteristics: neuronal regeneration. Experiments in our laboratory have shown that chemical lesion of the medial cortex (affecting up to 95% of its neurons) results in a cascade of events: first, massive neuronal death and axonal-dendritic retraction and, secondly, triggered ependymal-neuroblast proliferation and subsequent neo-histogenesis and regeneration of an almost new medial cortex, indistinguishable from a normal undamaged one. This is the only case to our knowledge of the regeneration of an amniote central nervous centre by new neuron production and neo-histogenesis. Thus the lizard cerebral cortex is a good model to study neuronal regeneration and the complex factors that regulate its neurogenetic, migratory and neo-synaptogenetic events.


Asunto(s)
Corteza Cerebral/fisiología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Animales , Corteza Cerebral/citología , Lagartos , Modelos Animales , Neuronas/efectos de los fármacos , Estaciones del Año
13.
An. acad. bras. ciênc ; 74(1): 85-104, Mar. 2002. ilus
Artículo en Inglés | LILACS | ID: lil-303797

RESUMEN

The medial cerebral cortex of lizards, an area homologous to the hippocampal fascia dentata, shows delayed postnatal neurogenesis, i.e., cells in the medial cortex ependyma proliferate and give rise to immature neurons, which migrate to the cell layer. There, recruited neurons differentiate and give rise to zinc containing axons directed to the rest of cortical areas, thus resulting in a continuous growth of the medial cortex and its zinc-enriched axonal projection. This happens along the lizard life span, even in adult lizards, thus allowing one of their most important characteristics: neuronal regeneration. Experiments in our laboratory have shown that chemical lesion of the medial cortex (affecting up to 95 percent of its neurons) results in a cascade of events: first, massive neuronal death and axonal-dendritic retraction and, secondly, triggered ependymal-neuroblast proliferation and subsequent neo-histogenesis and regeneration of an almost new medial cortex, indistinguishable from a normal undamaged one. This is the only case to our knowledge of the regeneration of an amniote central nervous centre by new neuron production and neo-histogenesis. Thus the lizard cerebral cortex is a good model to study neuronal regeneration and the complex factors that regulate its neurogenetic, migratory and neo-synaptogenetic events


Asunto(s)
Animales , Corteza Cerebral , Regeneración Nerviosa , Neuronas , Corteza Cerebral , Epéndimo , Lagartos , Neuronas , Estaciones del Año , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA