Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 40(7): 111200, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977506

RESUMEN

Apolipoprotein E4 (APOEε4) is the major allelic risk factor for late-onset sporadic Alzheimer's disease (sAD). Inflammation is increasingly considered as critical in sAD initiation and progression. Identifying brain molecular mechanisms that could bridge these two risk factors remain unelucidated. Leveraging induced pluripotent stem cell (iPSC)-based strategies, we demonstrate that APOE controls inflammation in human astrocytes by regulating Transgelin 3 (TAGLN3) expression and, ultimately, nuclear factor κB (NF-κB) activation. We uncover that APOE4 specifically downregulates TAGLN3, involving histone deacetylases activity, which results in low-grade chronic inflammation and hyperactivated inflammatory responses. We show that APOE4 exerts a dominant negative effect to prime astrocytes toward a pro-inflammatory state that is pharmacologically reversible by TAGLN3 supplementation. We further confirm that TAGLN3 is downregulated in the brain of patients with sAD. Our findings highlight the APOE-TAGLN3-NF-κB axis regulating neuroinflammation in human astrocytes and reveal TAGLN3 as a molecular target to modulate neuroinflammation, as well as a potential biomarker for AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Astrocitos/metabolismo , Humanos , Inflamación/metabolismo , FN-kappa B/metabolismo
3.
J Med Chem ; 63(8): 3868-3880, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31940200

RESUMEN

Farnesoid X receptor (FXR) agonists are emerging as important potential therapeutics for the treatment of nonalcoholic steatohepatitis (NASH) patients, as they exert positive effects on multiple aspects of the disease. FXR agonists reduce lipid accumulation in the liver, hepatocellular inflammation, hepatic injury, and fibrosis. While there are currently no approved therapies for NASH, the bile acid-derived FXR agonist obeticholic acid (OCA; 6-ethyl chenodeoxycholic acid) has shown promise in clinical studies. Previously, we described the discovery of tropifexor (LJN452), the most potent non-bile acid FXR agonist currently in clinical investigation. Here, we report the discovery of a novel chemical series of non-bile acid FXR agonists based on a tricyclic dihydrochromenopyrazole core from which emerged nidufexor (LMB763), a compound with partial FXR agonistic activity in vitro and FXR-dependent gene modulation in vivo. Nidufexor has advanced to Phase 2 human clinical trials in patients with NASH and diabetic nephropathy.


Asunto(s)
Benzotiazoles/uso terapéutico , Ácido Quenodesoxicólico/análogos & derivados , Dieta Alta en Grasa/efectos adversos , Isoxazoles/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/agonistas , Animales , Benzotiazoles/química , Ácido Quenodesoxicólico/química , Ácido Quenodesoxicólico/uso terapéutico , Perros , Humanos , Isoxazoles/química , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/etiología , Estructura Terciaria de Proteína , Ratas , Resultado del Tratamiento
4.
Protein Cell ; 10(7): 485-495, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31041783

RESUMEN

Identification of the precise molecular pathways involved in oncogene-induced transformation may help us gain a better understanding of tumor initiation and promotion. Here, we demonstrate that SOX2+ foregut epithelial cells are prone to oncogenic transformation upon mutagenic insults, such as KrasG12D and p53 deletion. GFP-based lineage-tracing experiments indicate that SOX2+ cells are the cells-of-origin of esophagus and stomach hyperplasia. Our observations indicate distinct roles for oncogenic KRAS mutation and P53 deletion. p53 homozygous deletion is required for the acquisition of an invasive potential, and KrasG12D expression, but not p53 deletion, suffices for tumor formation. Global gene expression analysis reveals secreting factors upregulated in the hyperplasia induced by oncogenic KRAS and highlights a crucial role for the CXCR2 pathway in driving hyperplasia. Collectively, the array of genetic models presented here demonstrate that stratified epithelial cells are susceptible to oncogenic insults, which may lead to a better understanding of tumor initiation and aid in the design of new cancer therapeutics.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Mutación , Receptores de Interleucina-8B/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Proliferación Celular , Neoplasias Esofágicas/patología , Femenino , Masculino , Ratones , Ratones Mutantes , Transducción de Señal , Células Tumorales Cultivadas
5.
Science ; 356(6337): 503-508, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28473583

RESUMEN

CpG islands (CGIs) are primarily promoter-associated genomic regions and are mostly unmethylated within highly methylated mammalian genomes. The mechanisms by which CGIs are protected from de novo methylation remain elusive. Here we show that insertion of CpG-free DNA into targeted CGIs induces de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status is stably maintained even after CpG-free DNA removal, extensive passaging, and differentiation. By targeting the DNA mismatch repair gene MLH1 CGI, we could generate a PSC model of a cancer-related epimutation. Furthermore, we successfully corrected aberrant imprinting in induced PSCs derived from an Angelman syndrome patient. Our results provide insights into how CpG-free DNA induces de novo CGI methylation and broaden the application of targeted epigenome editing for a better understanding of human development and disease.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Células Madre Pluripotentes/metabolismo , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Reparación del ADN/genética , Humanos , Homólogo 1 de la Proteína MutL/genética , Mutagénesis Insercional , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/genética
6.
Cell Cycle ; 15(18): 2393-7, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-27314153

RESUMEN

Cancer comprises heterogeneous cells, ranging from highly proliferative immature precursors to more differentiated cell lineages. The emergence of the "cancer stem cell" (CSC) hypothesis that they are the cells responsible for resistance, metastasis and secondary tumor appearance identifies these populations as novel obligatory targets for the treatment of cancer. CSCs, like their normal tissue-specific stem cell counterparts, are multipotent, partially differentiated, self-sustaining, yet transformed cells. To date, most studies on CSC biology have relied on the use of murine models and primary human material. In spite of much progress, the use of primary material presents several limitations that limit our understanding of the mechanisms underlying CSC formation, the similarities between normal stem cells and CSCs and ultimately, the possibility for developing targeted therapies. Recently, different strategies for controlling cell fate have been applied to the modeling of human cancer initiation and for the generation of human CSC models. Here we will summarize recent developments in the establishment and application of reprogramming strategies for the modeling of human cancer initiation and CSC formation.


Asunto(s)
Reprogramación Celular , Modelos Biológicos , Neoplasias/patología , Células Madre Neoplásicas/patología , Animales , Carcinogénesis/patología , Humanos , Mutación/genética
7.
Nat Commun ; 7: 10743, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26899176

RESUMEN

Glioma tumour-initiating cells (GTICs) can originate upon the transformation of neural progenitor cells (NPCs). Studies on GTICs have focused on primary tumours from which GTICs could be isolated and the use of human embryonic material. Recently, the somatic genomic landscape of human gliomas has been reported. RTK (receptor tyrosine kinase) and p53 signalling were found dysregulated in ∼90% and 86% of all primary tumours analysed, respectively. Here we report on the use of human-induced pluripotent stem cells (hiPSCs) for modelling gliomagenesis. Dysregulation of RTK and p53 signalling in hiPSC-derived NPCs (iNPCs) recapitulates GTIC properties in vitro. In vivo transplantation of transformed iNPCs leads to highly aggressive tumours containing undifferentiated stem cells and their differentiated derivatives. Metabolic modulation compromises GTIC viability. Last, screening of 101 anti-cancer compounds identifies three molecules specifically targeting transformed iNPCs and primary GTICs. Together, our results highlight the potential of hiPSCs for studying human tumourigenesis.


Asunto(s)
Transformación Celular Neoplásica , Glioma/etiología , Células Madre Pluripotentes Inducidas , Células Madre Neoplásicas/fisiología , Células-Madre Neurales/fisiología , Línea Celular Tumoral , Femenino , Humanos , Masculino , Factores de Transcripción SOXB1/metabolismo , Ensayo de Tumor de Célula Madre
8.
Biochem Biophys Res Commun ; 473(3): 693-7, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-26655812

RESUMEN

Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called "Pioneer TFs", play an important role during the stochastic phase of iPSC reprogramming [2-6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Animales , Diferenciación Celular , Linaje de la Célula , Cromatina/química , Células Madre Embrionarias/citología , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Medicina Regenerativa/métodos , Factores de Transcripción/metabolismo
9.
Cancer Res ; 75(18): 3912-24, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26294212

RESUMEN

Hypoxia is a hallmark of solid tumors that drives malignant progression by altering epigenetic controls. In breast tumors, aberrant DNA methylation is a prevalent epigenetic feature associated with increased risk of metastasis and poor prognosis. However, the mechanism by which hypoxia alters DNA methylation or other epigenetic controls that promote breast malignancy remains poorly understood. We discovered that hypoxia deregulates TET1 and TET3, the enzymes that catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby leading to breast tumor-initiating cell (BTIC) properties. TET1/3 and 5hmC levels were closely associated with tumor hypoxia, tumor malignancy, and poor prognosis in breast cancer patients. Mechanistic investigations showed that hypoxia leads to genome-wide changes in DNA hydroxymethylation associated with upregulation of TNFα expression and activation of its downstream p38-MAPK effector pathway. Coordinate functions of TET1 and TET3 were also required to activate TNFα-p38-MAPK signaling as a response to hypoxia. Our results reveal how signal transduction through the TET-TNFα-p38-MAPK signaling axis is required for the acquisition of BTIC characteristics and tumorigenicity in vitro and in vivo, with potential implications for how to eradicate BTIC as a therapeutic strategy.


Asunto(s)
Neoplasias de la Mama/genética , Hipoxia de la Célula/fisiología , Metilación de ADN , Proteínas de Unión al ADN/fisiología , Dioxigenasas/fisiología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , 5-Metilcitosina/análogos & derivados , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hipoxia de la Célula/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Citosina/análogos & derivados , Citosina/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Dioxigenasas/biosíntesis , Dioxigenasas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones Desnudos , Oxigenasas de Función Mixta , Datos de Secuencia Molecular , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/enzimología , Pronóstico , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Estudios Retrospectivos , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
10.
Cell ; 161(3): 459-469, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910206

RESUMEN

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber's hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. PAPERCLIP.


Asunto(s)
Marcación de Gen , Enfermedades Mitocondriales/genética , Animales , Fusión Celular , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Endonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NZB , Enfermedades Mitocondriales/prevención & control , Mutación , Oocitos/metabolismo
11.
Circulation ; 131(14): 1278-1290, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25739401

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators with important functions in development and disease. Here, we sought to identify and functionally characterize novel lncRNAs critical for vertebrate development. METHODS AND RESULTS: By relying on human pluripotent stem cell differentiation models, we investigated lncRNAs differentially regulated at key steps during human cardiovascular development with a special focus on vascular endothelial cells. RNA sequencing led to the generation of large data sets that serve as a gene expression roadmap highlighting gene expression changes during human pluripotent cell differentiation. Stage-specific analyses led to the identification of 3 previously uncharacterized lncRNAs, TERMINATOR, ALIEN, and PUNISHER, specifically expressed in undifferentiated pluripotent stem cells, cardiovascular progenitors, and differentiated endothelial cells, respectively. Functional characterization, including localization studies, dynamic expression analyses, epigenetic modification monitoring, and knockdown experiments in lower vertebrates, as well as murine embryos and human cells, confirmed a critical role for each lncRNA specific for each analyzed developmental stage. CONCLUSIONS: We have identified and functionally characterized 3 novel lncRNAs involved in vertebrate and human cardiovascular development, and we provide a comprehensive transcriptomic roadmap that sheds new light on the molecular mechanisms underlying human embryonic development, mesodermal commitment, and cardiovascular specification.


Asunto(s)
Sistema Cardiovascular/crecimiento & desarrollo , Células Endoteliales/química , Regulación del Desarrollo de la Expresión Génica/genética , Miocitos Cardíacos/química , Células Madre Pluripotentes/química , ARN Largo no Codificante/aislamiento & purificación , Vertebrados/genética , Animales , Sistema Cardiovascular/metabolismo , Diferenciación Celular , Linaje de la Célula , Mapeo Cromosómico , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Corazón Fetal/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Datos de Secuencia Molecular , Morfolinos/farmacocinética , Miocitos Cardíacos/citología , ARN Largo no Codificante/fisiología , Análisis de Secuencia de ARN , Transcriptoma , Vertebrados/crecimiento & desarrollo , Pez Cebra/embriología
13.
Stem Cells ; 33(3): 713-25, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25385436

RESUMEN

c-Myc and phosphatidylinositol 3-OH kinase (PI3K) both participate in diverse cellular processes, including cell cycle control and tumorigenic transformation. They also contribute to preserving embryonic stem cell (ESC) characteristics. However, in spite of the vast knowledge, the molecular relationship between c-Myc and PI3K in ESCs is not known. Herein, we demonstrate that c-Myc and PI3K function cooperatively but independently to support ESC self-renewal when murine ESCs are cultured under conventional culture condition. Interestingly, culture of ESCs in 2i-condition including a GSK3ß and MEK inhibitor renders both PI3K and Myc signaling dispensable for the maintenance of pluripotent properties. These results suggest that the requirement for an oncogenic proliferation-dependent mechanism sustained by Myc and PI3K is context dependent and that the 2i-condition liberates ESCs from the dependence of this mechanism.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
14.
Cell Stem Cell ; 15(5): 589-604, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25517466

RESUMEN

Heart failure is a leading cause of mortality and morbidity in the developed world, partly because mammals lack the ability to regenerate heart tissue. Whether this is due to evolutionary loss of regenerative mechanisms present in other organisms or to an inability to activate such mechanisms is currently unclear. Here we decipher mechanisms underlying heart regeneration in adult zebrafish and show that the molecular regulators of this response are conserved in mammals. We identified miR-99/100 and Let-7a/c and their protein targets smarca5 and fntb as critical regulators of cardiomyocyte dedifferentiation and heart regeneration in zebrafish. Although human and murine adult cardiomyocytes fail to elicit an endogenous regenerative response after myocardial infarction, we show that in vivo manipulation of this molecular machinery in mice results in cardiomyocyte dedifferentiation and improved heart functionality after injury. These data provide a proof of concept for identifying and activating conserved molecular programs to regenerate the damaged heart.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/fisiología , Mamíferos/genética , MicroARNs/genética , Regeneración/genética , Animales , Desdiferenciación Celular/genética , Proliferación Celular , Regulación hacia Abajo/genética , Silenciador del Gen , Genoma , Humanos , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Pez Cebra/genética
15.
Curr Opin Genet Dev ; 28: 57-63, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25461451

RESUMEN

The generation of human induced pluripotent stem cells (iPS) has raised enormous expectations within the biomedical community due to their potential vast implications in regenerative and personalized medicine. However, reprogramming to iPS is still not fully comprehended. Difficulties found in ascribing specific molecular patterns to pluripotent cells (PSCs), and inherent inter-line and intra-line variability between different PSCs need to be resolved. Additionally, and despite multiple assumptions, it remains unclear whether the current in vitro culturing conditions for the maintenance and differentiation of PSCs do indeed recapitulate the developmental processes observed in vivo. As a consequence, basic questions such as what is the actual nature of PSCs remain unanswered and different theories have emerged in regards to the identity of these valuable cell population. Here we discuss on the published theories for defining PSC identity, the implications that the different postulated models have for the reprogramming field as well as speculate on potential future directions that might be opened once a precise knowledge on the nature of PSCs is accomplished.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Reprogramación Celular , Células Madre Pluripotentes/citología , Animales , Humanos
16.
Nat Protoc ; 9(11): 2693-704, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25340442

RESUMEN

This protocol presents recently developed methodologies for the differentiation of human pluripotent stem cells (hPSCs) into ureteric bud (UB) progenitor-like cells. Differentiation of human PSCs to UB progenitor-like cells allows for the generation of chimeric kidney cultures in which the human cells can self-assemble into chimeric 3D structures in combination with embryonic mouse kidney cells over a period of 18 d. UB progenitor-like cells are generated by a two-step process that combines in vitro commitment of human PSCs, whether embryonic stem cells (ESCs) or induced PSCs (iPSCs), under chemically defined culture conditions, with ex vivo cultures for the induction of 3D organogenesis. The models described here provide new opportunities for investigating human kidney development, modeling disease, evaluating regenerative medicine strategies, as well as for toxicology studies.


Asunto(s)
Técnicas de Cultivo de Célula , Riñón/citología , Técnicas de Cultivo de Órganos/métodos , Organoides/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Femenino , Humanos , Riñón/embriología , Masculino , Ratones Endogámicos , Organogénesis
17.
Stem Cells ; 32(11): 2923-2938, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25175072

RESUMEN

Reprogramming technologies have emerged as a promising approach for future regenerative medicine. Here, we report on the establishment of a novel methodology allowing for the conversion of human fibroblasts into hematopoietic progenitor-like cells with macrophage differentiation potential. SOX2 overexpression in human fibroblasts, a gene found to be upregulated during hematopoietic reconstitution in mice, induced the rapid appearance of CD34+ cells with a concomitant upregulation of mesoderm-related markers. Profiling of cord blood hematopoietic progenitor cell populations identified miR-125b as a factor facilitating commitment of SOX2-generated CD34+ cells to immature hematopoietic-like progenitor cells with grafting potential. Further differentiation toward the monocytic lineage resulted in the appearance of CD14+ cells with functional phagocytic capacity. In vivo transplantation of SOX2/miR-125b-generated CD34+ cells facilitated the maturation of the engrafted cells toward CD45+ cells and ultimately the monocytic/macrophage lineage. Altogether, our results indicate that strategies combining lineage conversion and further lineage specification by in vivo or in vitro approaches could help to circumvent long-standing obstacles for the reprogramming of human cells into hematopoietic cells with clinical potential.


Asunto(s)
Diferenciación Celular/fisiología , Fibroblastos/citología , Monocitos/citología , Células Madre/citología , Animales , Antígenos CD34/metabolismo , Linaje de la Célula/fisiología , Células Cultivadas , Humanos , Antígenos Comunes de Leucocito/metabolismo , Ratones
18.
Proc Natl Acad Sci U S A ; 111(14): 5076-82, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706886

RESUMEN

Induced pluripotent stem cells (iPSCs) are created by the reprogramming of somatic cells via overexpression of certain transcription factors, such as the originally described Yamanaka factors: Oct4, Sox2, Klf4, and c-Myc (OSKM). Here we discuss recent advancements in iPSC reprogramming and introduce mathematical approaches to help map the landscape between cell states during reprogramming. Our modelization indicates that OSKM expression diminishes and/or changes potential barriers between cell states and that epigenetic remodeling facilitate these transitions. From a practical perspective, the modeling approaches outlined here allow us to predict the time necessary to create a given number of iPSC colonies or the number of reprogrammed cells generated in a given time. Additional investigations will help to further refine modeling strategies, rendering them applicable toward the study of the development and stability of cancer cells or even other reprogramming processes such as lineage conversion. Ultimately, a quantitative understanding of cell state transitions might facilitate the establishment of regenerative medicine strategies and enhance the translation of reprogramming technologies into the clinic.


Asunto(s)
Diferenciación Celular , Modelos Biológicos , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Humanos , Factor 4 Similar a Kruppel , Células Madre Pluripotentes/metabolismo
19.
Nat Cell Biol ; 15(12): 1507-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24240476

RESUMEN

Diseases affecting the kidney constitute a major health issue worldwide. Their incidence and poor prognosis affirm the urgent need for the development of new therapeutic strategies. Recently, differentiation of pluripotent cells to somatic lineages has emerged as a promising approach for disease modelling and cell transplantation. Unfortunately, differentiation of pluripotent cells into renal lineages has demonstrated limited success. Here we report on the differentiation of human pluripotent cells into ureteric-bud-committed renal progenitor-like cells. The generated cells demonstrated rapid and specific expression of renal progenitor markers on 4-day exposure to defined media conditions. Further maturation into ureteric bud structures was accomplished on establishment of a three-dimensional culture system in which differentiated human cells assembled and integrated alongside murine cells for the formation of chimeric ureteric buds. Altogether, our results provide a new platform for the study of kidney diseases and lineage commitment, and open new avenues for the future application of regenerative strategies in the clinic.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Riñón/patología , Animales , Técnicas de Cultivo de Célula , Células Madre Embrionarias/fisiología , Humanos , Células MCF-7 , Mesodermo/patología , Ratones , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/terapia , Medicina Regenerativa , Trasplante de Células Madre , Técnicas de Cultivo de Tejidos , Tretinoina/fisiología
20.
Immunol Lett ; 155(1-2): 14-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24076314

RESUMEN

Somatic cell nuclear reprogramming is opening new doors for the modeling of human disease phenotypes in vitro, the identification of novel therapeutic compounds and diagnostic factors as well as future autologous cell replacement therapies. Despite the potential that reprogramming technologies bring, there are remaining concerns preventing their broad application in the short-term. One of them is the safety concern associated with the use of stem cell derivatives, those generated by reprogramming or even when embryonic stem cells are employed. Here we summarize the current knowledge in the field of stem cells and reprogramming with a particular focus on the pitfalls preventing rapid translation of stem cell technologies into the clinic. We discuss the most recent findings on immunogenicity and tumorigenicity of reprogrammed cells. We additionally provide an overview on the potential applications that reprogramming approaches might bring to the immunological field and elaborate on the use of induced pluripotent stem cells (iPSCs) with pre-arranged immune receptors for the development of future immunotherapeutic approaches. The use of reprogramming approaches can represent and provide groundbreaking strategies previously unachievable for stem cell engineering aimed at modulating immune responses. In summary, we provide an overview on the different topics related to the use of stem cells and highlight the most provocative, yet perhaps currently underappreciated, aspect of combining immunological and reprogramming strategies for the treatment of human disease.


Asunto(s)
Células Madre Embrionarias/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Neoplasias/inmunología , Complicaciones Posoperatorias/inmunología , Trasplante de Células Madre , Animales , Carcinogénesis/genética , Reprogramación Celular/inmunología , Terapia Genética , Humanos , Inmunidad/genética , Neoplasias/etiología , Neoplasias/prevención & control , Complicaciones Posoperatorias/prevención & control , Ingeniería de Proteínas , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Antígenos Embrionarios Específico de Estadio/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...