Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562852

RESUMEN

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.

2.
Complex Psychiatry ; 9(1-4): 154-171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058955

RESUMEN

Background: Lipids are essential components of the structure and for the function of brain cells. The intricate balance of lipids, including phospholipids, glycolipids, cholesterol, cholesterol ester, and triglycerides, is crucial for maintaining normal brain function. The roles of lipids and lipid droplets and their relevance to neurodegenerative and neuropsychiatric disorders (NPDs) remain largely unknown. Summary: Here, we reviewed the basic role of lipid components as well as a specific lipid organelle, lipid droplets, in brain function, highlighting the potential impact of altered lipid metabolism in the pathogenesis of Alzheimer's disease (AD) and NDPs. Key Messages: Brain lipid dysregulation plays a pivotal role in the pathogenesis and progression of neurodegenerative and NPDs including AD and schizophrenia. Understanding the cell type-specific mechanisms of lipid dysregulation in these diseases is crucial for identifying better diagnostic biomarkers and for developing therapeutic strategies aiming at restoring lipid homeostasis.

3.
Cell Genom ; 3(9): 100399, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37719141

RESUMEN

The mechanistic tie between genome-wide association study (GWAS)-implicated risk variants and disease-relevant cellular phenotypes remains largely unknown. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons as a neurodevelopmental model, we identify multiple schizophrenia (SZ) risk variants that display allele-specific open chromatin (ASoC) and are likely to be functional. Editing the strongest ASoC SNP, rs2027349, near vacuolar protein sorting 45 homolog (VPS45) alters the expression of VPS45, lncRNA AC244033.2, and a distal gene, C1orf54. Notably, the transcriptomic changes in neurons are associated with SZ and other neuropsychiatric disorders. Neurons carrying the risk allele exhibit increased dendritic complexity and hyperactivity. Interestingly, individual/combinatorial gene knockdown shows that these genes alter cellular phenotypes in a non-additive synergistic manner. Our study reveals that multiple genes at a single GWAS risk locus mediate a compound effect on neural function, providing a mechanistic link between a non-coding risk variant and disease-related cellular phenotypes.

4.
Biol Psychiatry ; 94(2): 153-163, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36581494

RESUMEN

BACKGROUND: Schizophrenia (SCZ) is a debilitating psychiatric disorder with a large genetic contribution; however, its neurodevelopmental substrates remain largely unknown. Modeling pathogenic processes in SCZ using human induced pluripotent stem cell-derived neurons (iNs) has emerged as a promising strategy. Copy number variants confer high genetic risk for SCZ, with duplication of the 16p11.2 locus increasing the risk 14.5-fold. METHODS: To dissect the contribution of induced excitatory neurons (iENs) versus GABAergic (gamma-aminobutyric acidergic) neurons (iGNs) to SCZ pathophysiology, we induced iNs from CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 isogenic and SCZ patient-derived induced pluripotent stem cells and analyzed SCZ-related phenotypes in iEN monocultures and iEN/iGN cocultures. RESULTS: In iEN/iGN cocultures, neuronal firing and synchrony were reduced at later, but not earlier, stages of in vitro development. These were fully recapitulated in iEN monocultures, indicating a primary role for iENs. Moreover, isogenic iENs showed reduced dendrite length and deficits in calcium handling. iENs from 16p11.2 duplication-carrying patients with SCZ displayed overlapping deficits in network synchrony, dendrite outgrowth, and calcium handling. Transcriptomic analysis of both iEN cohorts revealed molecular markers of disease related to the glutamatergic synapse, neuroarchitecture, and calcium regulation. CONCLUSIONS: Our results indicate the presence of 16p11.2 duplication-dependent alterations in SCZ patient-derived iENs. Transcriptomics and cellular phenotyping reveal overlap between isogenic and patient-derived iENs, suggesting a central role of glutamatergic, morphological, and calcium dysregulation in 16p11.2 duplication-mediated pathogenesis. Moreover, excitatory dysfunction during early neurodevelopment is implicated as the basis of SCZ pathogenesis in 16p11.2 duplication carriers. Our results support network synchrony and calcium handling as outcomes directly linked to this genetic risk variant.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/patología , Calcio , Neuronas/patología
5.
6.
PLoS One ; 17(8): e0271661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947543

RESUMEN

Racial/ethnic minorities have been disproportionately impacted by COVID-19. The effects of COVID-19 on the long-term mental health of minorities remains unclear. To evaluate differences in odds of screening positive for depression and anxiety among various racial and ethnic groups during the latter phase of the COVID-19 pandemic, we performed a cross-sectional analysis of 691,473 participants nested within the prospective smartphone-based COVID Symptom Study in the United States (U.S.) and United Kingdom (U.K). from February 23, 2021 to June 9, 2021. In the U.S. (n=57,187), compared to White participants, the multivariable odds ratios (ORs) for screening positive for depression were 1·16 (95% CI: 1·02 to 1·31) for Black, 1·23 (1·11 to 1·36) for Hispanic, and 1·15 (1·02 to 1·30) for Asian participants, and 1·34 (1·13 to 1·59) for participants reporting more than one race/other even after accounting for personal factors such as prior history of a mental health disorder, COVID-19 infection status, and surrounding lockdown stringency. Rates of screening positive for anxiety were comparable. In the U.K. (n=643,286), racial/ethnic minorities had similarly elevated rates of positive screening for depression and anxiety. These disparities were not fully explained by changes in leisure time activities. Racial/ethnic minorities bore a disproportionate mental health burden during the COVID-19 pandemic. These differences will need to be considered as health care systems transition from prioritizing infection control to mitigating long-term consequences.


Asunto(s)
COVID-19 , Negro o Afroamericano , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Estudios Transversales , Minorías Étnicas y Raciales , Humanos , Salud Mental , Pandemias , Estudios Prospectivos , Estados Unidos/epidemiología
7.
Am J Hum Genet ; 109(8): 1500-1519, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931052

RESUMEN

Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Variaciones en el Número de Copia de ADN , Humanos , Neuronas , Esquizofrenia/metabolismo , Sinapsis/metabolismo
8.
Biol Psychiatry ; 91(1): 102-117, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34099189

RESUMEN

BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.


Asunto(s)
Trastorno Bipolar/genética , Trastorno Depresivo Mayor , Trastornos Psicóticos , Esquizofrenia/genética , Caracteres Sexuales , Trastorno Depresivo Mayor/genética , Células Endoteliales , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Trastornos Psicóticos/genética , Receptores de Factores de Crecimiento Endotelial Vascular , Sulfurtransferasas
10.
Arch Sex Behav ; 50(8): 3377-3383, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34518958

RESUMEN

Male sexual orientation is influenced by environmental and complex genetic factors. Childhood gender nonconformity (CGN) is one of the strongest correlates of homosexuality with substantial familiality. We studied brothers in families with two or more homosexual brothers (409 concordant sibling pairs in 384 families, as well as their heterosexual brothers), who self-recalled their CGN. To map loci for CGN, we conducted a genome-wide linkage scan (GWLS) using SNP genotypes. The strongest linkage peaks, each with significant or suggestive two-point LOD scores and multipoint LOD score support, were on chromosomes 5q31 (maximum two-point LOD = 4.45), 6q12 (maximum two-point LOD = 3.64), 7q33 (maximum two-point LOD = 3.09), and 8q24 (maximum two-point LOD = 3.67), with the latter not overlapping with previously reported strongest linkage region for male sexual orientation on pericentromeric chromosome 8. Family-based association analyses were used to identify associated variants in the linkage regions, with a cluster of SNPs (minimum association p = 1.3 × 10-8) found at the 5q31 linkage peak. Genome-wide, clusters of multiple SNPs in the 10-6 to 10-8 p-value range were found at chromosomes 5p13, 5q31, 7q32, 8p22, and 10q23, highlighting glutamate-related genes. This is the first reported GWLS and genome-wide association study on CGN. Further increasing genetic knowledge about CGN and its relationships to male sexual orientation should help advance our understanding of the biology of these associated traits.


Asunto(s)
Identidad de Género , Estudio de Asociación del Genoma Completo , Ligamiento Genético , Heterosexualidad , Homosexualidad Masculina/genética , Humanos , Masculino , Hermanos
11.
Nat Hum Behav ; 5(9): 1251-1258, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426668

RESUMEN

Human same-sex sexual behaviour (SSB) is heritable, confers no immediately obvious direct reproductive or survival benefit and can divert mating effort from reproductive opportunities. This presents a Darwinian paradox: why has SSB been maintained despite apparent selection against it? We show that genetic effects associated with SSB may, in individuals who only engage in opposite-sex sexual behaviour (OSB individuals), confer a mating advantage. Using results from a recent genome-wide association study of SSB and a new genome-wide association study on number of opposite-sex sexual partners in 358,426 individuals, we show that, among OSB individuals, genetic effects associated with SSB are associated with having more opposite-sex sexual partners. Computer simulations suggest that such a mating advantage for alleles associated with SSB could help explain how it has been evolutionarily maintained. Caveats include the cultural specificity of our UK and US samples, the societal regulation of sexual behaviour in these populations, the difficulty of measuring mating success and the fact that measured variants capture a minority of the total genetic variation in the traits.


Asunto(s)
Conducta de Elección/fisiología , Conducta Sexual/fisiología , Parejas Sexuales/psicología , Minorías Sexuales y de Género/psicología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Fenotipo , Reino Unido , Estados Unidos
12.
iScience ; 24(7): 102785, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34308291

RESUMEN

Cell type-specific pathway-based polygenic risk scores (PRSs) may better inform disease biology and improve the precision of PRS-based clinical prediction. For microRNA-137 (MIR137), a leading neuropsychiatric risk gene and a post-transcriptional master regulator, we conducted a cell type-specific gene set PRS analysis in both European and Han Chinese schizophrenia (SZ) samples. We found that the PRS of neuronal MIR137 -target genes better explains SZ risk than PRS derived from MIR137 -target genes in iPSC or from the reported gene sets showing MIR137 -altered expression. Compared with the PRS derived from the whole genome or the target genes of TCF4, the PRS of neuronal MIR137 -target genes explained a disproportionally larger (relative to SNP number) SZ risk in the European sample, but with a more modest advantage in the Han Chinese sample. Our study demonstrated a cell type-specific polygenic contribution of MIR137 -target genes to SZ risk, highlighting the value of cell type-specific pathway-based PRS analysis for uncovering disease-relevant biological features.

13.
Arch Sex Behav ; 50(8): 3371-3375, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34080073

RESUMEN

Male sexual orientation is a scientifically and socially important trait shown by family and twin studies to be influenced by environmental and complex genetic factors. Individual genome-wide linkage studies (GWLS) have been conducted, but not jointly analyzed. Two main datasets account for > 90% of the published GWLS concordant sibling pairs on the trait and are jointly analyzed here: MGSOSO (Molecular Genetic Study of Sexual Orientation; 409 concordant sibling pairs in 384 families, Sanders et al. (2015)) and Hamer (155 concordant sibling pairs in 145 families, Mustanski et al. (2005)). We conducted multipoint linkage analyses with Merlin on the datasets separately since they were genotyped differently, integrated genetic marker positions, and combined the resultant LOD (logarithm of the odds) scores at each 1 cM grid position. We continue to find the strongest linkage support at pericentromeric chromosome 8 and chromosome Xq28. We also incorporated the remaining published GWLS dataset (on 55 families) by using meta-analytic approaches on published summary statistics. The meta-analysis has maximized the positional information from GWLS of currently available family resources and can help prioritize findings from genome-wide association studies (GWAS) and other approaches. Although increasing evidence highlights genetic contributions to male sexual orientation, our current understanding of contributory loci is still limited, consistent with the complexity of the trait. Further increasing genetic knowledge about male sexual orientation, especially via large GWAS, should help advance our understanding of the biology of this important trait.


Asunto(s)
Genoma Humano , Estudio de Asociación del Genoma Completo , Femenino , Ligamiento Genético , Humanos , Escala de Lod , Masculino , Conducta Sexual
14.
Neuropsychopharmacology ; 46(10): 1746-1756, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34007041

RESUMEN

Repeated nicotine exposure leads to sensitization (SST) and enhances self-administration (SA) in rodents. However, the molecular basis of nicotine SST and SA and their biological relevance to the mounting genome-wide association study (GWAS) loci of human addictive behaviors are poorly understood. Considering a gateway drug role of nicotine, we modeled nicotine SST and SA in F1 progeny of inbred rats (F344/BN) and conducted integrative genomics analyses. We unexpectedly observed male-specific nicotine SST and a parental effect of SA only present in paternal F344 crosses. Transcriptional profiling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) core and shell further revealed sex- and brain region-specific transcriptomic signatures of SST and SA. We found that genes associated with SST and SA were enriched for those related to synaptic processes, myelin sheath, and tobacco use disorder or chemdependency. Interestingly, SST-associated genes were often downregulated in male VTA but upregulated in female VTA, and strongly enriched for smoking GWAS risk variants, possibly explaining the male-specific SST. For SA, we found widespread region-specific allelic imbalance of expression (AIE), of which genes showing AIE bias toward paternal F344 alleles in NAc core were strongly enriched for SA-associated genes and for GWAS risk variants of smoking initiation, likely contributing to the parental effect of SA. Our study suggests a mechanistic link between transcriptional changes underlying the NIC SST and SA and human nicotine addiction, providing a resource for understanding the neurobiology basis of the GWAS findings on human smoking and other addictive phenotypes.


Asunto(s)
Conducta Adictiva , Nicotina , Animales , Conducta Adictiva/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Fenotipo , Ratas , Ratas Endogámicas F344
15.
Science ; 371(6536)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33766859

RESUMEN

Hamer et al argue that the variable "ever versus never had a same-sex partner" does not capture the complexity of human sexuality. We agree and said so in our paper. But Hamer et al neglect to mention that we also reported follow-up analyses showing substantial overlap of the genetic influences on our main variable and on more nuanced measures of sexual behavior, attraction, and identity.


Asunto(s)
Estudio de Asociación del Genoma Completo , Conducta Sexual , Humanos , Solución de Problemas
16.
Science ; 369(6503): 561-565, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32732423

RESUMEN

Most neuropsychiatric disease risk variants are in noncoding sequences and lack functional interpretation. Because regulatory sequences often reside in open chromatin, we reasoned that neuropsychiatric disease risk variants may affect chromatin accessibility during neurodevelopment. Using human induced pluripotent stem cell (iPSC)-derived neurons that model developing brains, we identified thousands of genetic variants exhibiting allele-specific open chromatin (ASoC). These neuronal ASoCs were partially driven by altered transcription factor binding, overrepresented in brain gene enhancers and expression quantitative trait loci, and frequently associated with distal genes through chromatin contacts. ASoCs were enriched for genetic variants associated with brain disorders, enabling identification of functional schizophrenia risk variants and their cis-target genes. This study highlights ASoC as a functional mechanism of noncoding neuropsychiatric risk variants, providing a powerful framework for identifying disease causal variants and genes.


Asunto(s)
Alelos , Encéfalo/metabolismo , Cromatina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Esquizofrenia/genética , Elementos de Facilitación Genéticos , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Riesgo
17.
Mol Neuropsychiatry ; 5(Suppl 1): 85-96, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32399472

RESUMEN

Microglia are the primary innate immune cell type in the brain that have been implicated in the pathogenesis of several neurodegenerative and neuropsychiatric disorders, most notably Alzheimer's disease (AD) and schizophrenia. Microglia generated from human induced pluripotent stem cells (hiPSCs) represent a promising in vitro cellular model for studying the neuroimmune interactions involved in these disorders. Among several methods of generating -hiPSC-derived microglia (iMG) - varying in duration and resultant purity - a recent protocol by Brownjohn et al. [Stem Cell Reports. 2018 Apr;10(4):1294-307] is particularly simple and efficient. However, the replicability of this method, transcriptomic similarity of these iMG to primary adult microglia, and their genetic relevance to disease (i.e., enrichment of disease risk loci in genes preferentially expressed in these cells) remains unclear. Using two hiPSC lines, we demonstrated that Brownjohn's protocol can rapidly generate iMG that morphologically and functionally resembled microglia. The iMG cells we generated were found to be transcriptionally similar to previously reported iMG, as well as fetal and adult microglia. Furthermore, by using cell type-specific gene expression to partition disease heritability, we showed that iMG cells are genetically relevant to AD but found no significant enrichments of risk loci of Parkinson's disease, schizophrenia, major depressive disorder, bipolar disorder, autism spectrum disorder, or body mass index. Across a range of neuronal and immune cell types, we found only iMG, primary microglia, and microglia-like cell types exhibited a significant enrichment for AD heritability. Our results thus support the use of iMG as a human cellular model for understanding AD biology and underlying genetic factors, as well as for developing and efficiently screening new therapeutics.

18.
Arch Sex Behav ; 49(7): 2461-2468, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31950380

RESUMEN

We examined whether recalled childhood gender nonconformity and self-reported adult gender nonconformity is familial, using data from 1154 families selected for having at least two homosexual brothers. Specifically, we examined the extent to which homosexual men's variation in gender nonconformity runs in families by examining pairs of genetic brothers who were both homosexual (N = 672-697 full sibling concordant pairs). We also examined similarity between homosexual and heterosexual brothers (N = 79-82 full sibling discordant pairs). Consistent with past studies, concordant pairs yielded modest positive correlations consistent with moderate genetic and/or familial environmental effects on gender nonconformity. Unlike results of smaller past studies, discordant pairs also yielded modest positive, though nonsignificant, correlations. Our results support the feasibility of supplementing genetic studies of male sexual orientation with analyses of gender nonconformity variation.


Asunto(s)
Identidad de Género , Heterosexualidad/psicología , Homosexualidad Masculina/psicología , Humanos , Masculino
20.
Artículo en Inglés | MEDLINE | ID: mdl-31555746

RESUMEN

Schizophrenia (SZ) is a severe mental disorder afflicting around 1% of the population. It is highly heritable but with complex genetics. Recent research has unraveled a plethora of risk loci for SZ. Accordingly, our conceptual understanding of SZ genetics has been rapidly evolving, from oligogenic models towards polygenic or even omnigenic models. A pressing challenge to the field, however, is the translation of the many genetic findings of SZ into disease biology insights leading to more effective treatments. Bridging this gap requires the integration of genetic findings and functional genomics using appropriate cellular models. Harnessing new technologies, such as the development of human induced pluripotent stem cells (hiPSC) and the CRISPR/Cas-based genome/epigenome editing approach are expected to change our understanding of SZ disease biology to a fundamentally higher level. Here, we discuss some new developments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...