Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37947420

RESUMEN

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Asunto(s)
Microbiota , Humanos , Microbiota/genética , Disbiosis
3.
Curr Opin Microbiol ; 70: 102205, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36201974

RESUMEN

Finding and targeting genes that quantitatively contribute to agricultural and ecological processes progresses food production and conservation efforts. Typically, quantitative genetic approaches link variants in a single organism's genome with a trait of interest. Recently, genome-to-genome mapping has found genome variants interacting between species to produce the result of a multiorganism (including multikingdom) interaction. These were plant and bacterial pathogen genome interactions; plant-fungal coquantitative genetics have not yet been applied. Plant-mycorrhizae symbioses exist across most biomes, for a majority of land plants, including crop plants, and manipulate many traits from single organisms to ecosystems for which knowing the genetic basis would be useful. The availability of Rhizophagus irregularis mycorrhizal isolates, with genomic information, makes dual-genome methods with beneficial mutualists accessible and imminent.


Asunto(s)
Micorrizas , Micorrizas/genética , Ecosistema , Simbiosis/genética , Plantas/genética , Plantas/microbiología , Agricultura
4.
PLoS One ; 17(7): e0270481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776745

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are part of the most widespread fungal-plant symbiosis. They colonize at least 80% of plant species, promote plant growth and plant diversity. These fungi are multinucleated and contain either one or two haploid nuclear genotypes (monokaryon and dikaryon) identified by the alleles at a putative mating-type locus. This taxon has been considered as an ancient asexual scandal because of the lack of observable sexual structures. Despite identification of a putative mating-type locus and functional activation of genes related to mating when two isolates co-exist, it remains unknown if the AMF life cycle involves a sexual or parasexual stage. We used publicly available genome sequences to test if Rhizophagus irregularis dikaryon genomes display signatures of sexual reproduction in the form of reciprocal recombination patterns, or if they display exclusively signatures of parasexual reproduction involving gene conversion. We used short-read and long-read sequence data to identify nucleus-specific alleles within dikaryons and then compared them to orthologous gene sequences from related monokaryon isolates displaying the same putative MAT-types as the dikaryon. We observed that the two nucleus-specific alleles of the dikaryon A5 are more related to the homolog sequences of monokaryon isolates displaying the same putative MAT-type than between each other. We also observed that these nucleus-specific alleles displayed reciprocal recombination signatures. These results confirm that dikaryon and monokaryon isolates displaying the same putative MAT-type are related in their life-cycle. These results suggest that a genetic exchange mechanism, involving reciprocal recombination in dikaryon genomes, allows AMF to generate genetic diversity.


Asunto(s)
Micorrizas , Hongos , Genoma Fúngico , Genómica , Micorrizas/fisiología , Plantas/genética , Recombinación Genética , Simbiosis/genética
5.
Ecol Lett ; 25(2): 509-520, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34971476

RESUMEN

Theory suggests that relatives will cooperate more, and compete less, because of an increased benefit for shared genes. In symbiotic partnerships, hosts may benefit from interacting with highly related symbionts because there is less conflict among the symbionts. This has been difficult to test empirically. We used the arbuscular mycorrhizal symbiosis to study the effects of fungal relatedness on host and fungal benefits, creating fungal networks varying in relatedness between two hosts, both in soil and in-vitro. To determine how fungal relatedness affected overall transfer of nutrients, we fluorescently tagged phosphorus and quantified resource distribution between two root systems. We found that colonization by less-related fungi was associated with increased fungal growth, lower transport of nutrients across the network, and lower plant benefit - likely an outcome of increased fungal competition. More generally, we demonstrate how symbiont relatedness can mediate benefits of symbioses.


Asunto(s)
Micorrizas , Hongos , Micorrizas/genética , Fósforo , Raíces de Plantas , Plantas , Simbiosis
6.
Front Plant Sci ; 12: 693037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239529

RESUMEN

A vast majority of terrestrial plants are dependent on arbuscular mycorrhizal fungi (AMF) for their nutrient acquisition. AMF act as an extension of the root system helping phosphate uptake. In agriculture, harnessing the symbiosis can potentially increase plant growth. Application of the AMF Rhizophagus irregularis has been demonstrated to increase the yields of various crops. However, there is a paradigm that AMF colonization of roots, as well as the plant benefits afforded by inoculation with AMF, decreases with increasing phosphorus (P) supply in the soil. The paradigm suggests that when fertilized with sufficient P, inoculation of crops would not be beneficial. However, the majority of experiments demonstrating the paradigm were conducted in sterile conditions without a background AMF or soil microbial community. Interestingly, intraspecific variation in R. irregularis can greatly alter the yield of cassava even at a full application of the recommended P dose. Cassava is a globally important crop, feeding 800 million people worldwide, and a crop that is highly dependent on AMF for P uptake. In this study, field trials were conducted at three locations in Kenya and Tanzania using different AMF and cassava varieties under different P fertilization levels to test if the paradigm occurs in tropical field conditions. We found that AMF colonization and inoculation responsiveness of cassava does not always decrease with an increased P supply as expected by the paradigm. The obtained results demonstrate that maximizing the inoculation responsiveness of cassava is not necessarily only in conditions of low P availability, but that this is dependent on cassava and fungal genotypes. Thus, the modeling of plant symbiosis with AMF under different P levels in nature should be considered with caution.

7.
Commun Biol ; 4(1): 901, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294866

RESUMEN

Early-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


Asunto(s)
Epigenoma , Hongos/genética , Genoma Fúngico , Micorrizas/genética , Hongos/química , Micorrizas/química , Filogenia
8.
New Phytol ; 231(5): 1984-2001, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34085297

RESUMEN

Arbuscular mycorrhizal fungi (AMF) form mutualisms with most plant species. The model AMF Rhizophagus irregularis is common in many ecosystems and naturally forms homokaryons and dikaryons. Quantitative variation in allele frequencies in clonally dikaryon offspring suggests they disproportionately inherit two distinct nuclear genotypes from their parent. This is interesting, because such progeny strongly and differentially affect plant growth. Neither the frequency and magnitude of this occurrence nor its effect on gene transcription are known. Using reduced representation genome sequencing, transcriptomics, and quantitative analysis tools, we show that progeny of homokaryons and dikaryons are qualitatively genetically identical to the parent. However, dikaryon progeny differ quantitatively due to unequal inheritance of nuclear genotypes. Allele frequencies of actively transcribed biallelic genes resembled the frequencies of the two nuclear genotypes. More biallelic genes showed transcription of both alleles than monoallelic transcription, but biallelic transcription was less likely with greater allelic divergence. Monoallelic transcription levels of biallelic genes were reduced compared with biallelic gene transcription, a finding consistent with genomic conflict. Given that genetic variation in R. irregularis is associated with plant growth, our results establish quantitative genetic variation as a future consideration when selecting AMF lines to improve plant production.


Asunto(s)
Glomeromycota , Micorrizas , Desequilibrio Alélico , Ecosistema , Hongos , Genotipo , Glomeromycota/genética , Micorrizas/genética , Simbiosis , Transcriptoma
10.
Mycorrhiza ; 31(3): 289-300, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33638731

RESUMEN

While many molecular studies have documented arbuscular mycorrhizal fungi (AMF) communities in temperate ecosystems, very few studies exist in which molecular techniques have been used to study tropical AMF communities. Understanding the composition of AMF communities in tropical areas gains special relevance as crop productivity in typically low fertility tropical soils can be improved with the use of AMF. We used a hierarchical sampling approach in which we sampled soil from cocoa (Theobroma cacao L.) plantations nested in localities, and in which localities were nested within each of three regions of Côte d'Ivoire. This sampling strategy, combined with 18S rRNA gene sequencing and a dedicated de novo OTU-picking model, allowed us to study AMF community composition and how it is influenced at different geographical scales and across environmental gradients. Several factors, including pH, influenced overall AMF alpha diversity and differential abundance of specific taxa and families of the Glomeromycotina. Assemblages and diversity metrics at the local scale did not reliably predict those at regional scales. The amount of variation explained by soil, climate, and geography variables left a large proportion of the variance to be explained by other processes, likely happening at smaller scales than the ones considered in this study. Gaining a better understanding of processes involved in shaping tropical AMF community composition and AMF establishment are much needed and could allow for the development of sustainable, productive tropical agroecosystems.


Asunto(s)
Cacao , Micorrizas , Côte d'Ivoire , Ecosistema , Micorrizas/genética , Suelo , Microbiología del Suelo
11.
Glob Chang Biol ; 26(12): 6715-6728, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32866994

RESUMEN

Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above-ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above- and below-ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a c. 3,000 m elevation gradient, by fitting species distribution models. Higher model performances for animals and plants than for soil microbes (fungi, bacteria and protists) suggest that the direct influence of topoclimate is stronger on above-ground species than on below-ground microorganisms. Accordingly, direct climate change effects are predicted to be stronger for above-ground than for below-ground taxa, whereas factors expressing local soil microclimate and geochemistry are likely more important to explain and forecast the occurrence patterns of soil microbiota. Detailed mapping and future scenarios of soil microclimate and microhabitats, together with comparative studies of interacting and ecologically dependent above- and below-ground biota, are thus needed to understand and realistically forecast the future distribution of ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Microclima , Suelo , Microbiología del Suelo
12.
ISME J ; 14(10): 2381-2394, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32514118

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are of great ecological importance because of their effects on plant growth. Closely related genotypes of the same AMF species coexist in plant roots. However, almost nothing is known about the molecular interactions occurring during such coexistence. We compared in planta AMF gene transcription in single and coinoculation treatments with two genetically different isolates of Rhizophagus irregularis in symbiosis independently on three genetically different cassava genotypes. Remarkably few genes were specifically upregulated when the two fungi coexisted. Strikingly, almost all of the genes with an identifiable putative function were known to be involved in mating in other fungal species. Several genes were consistent across host plant genotypes but more upregulated genes involved in putative mating were observed in host genotype (COL2215) compared with the two other host genotypes. The AMF genes that we observed to be specifically upregulated during coexistence were either involved in the mating pheromone response, in meiosis, sexual sporulation or were homologs of MAT-locus genes known in other fungal species. We did not observe the upregulation of the expected homeodomain genes contained in a putative AMF MAT-locus, but observed upregulation of HMG-box genes similar to those known to be involved in mating in Mucoromycotina species. Finally, we demonstrated that coexistence between the two fungal genotypes in the coinoculation treatments explained the number of putative mating response genes activated in the different plant host genotypes. This study demonstrates experimentally the activation of genes involved in a putative mating response and represents an important step towards the understanding of coexistence and sexual reproduction in these important plant symbionts.


Asunto(s)
Glomeromycota , Micorrizas , Hongos , Glomeromycota/genética , Micorrizas/genética , Raíces de Plantas , Reproducción , Simbiosis/genética
13.
ISME J ; 14(6): 1333-1344, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32066875

RESUMEN

Most land plants form symbioses with arbuscular mycorrhizal fungi (AMF). Diversity of AMF increases plant community productivity and plant diversity. For decades, it was known that plants trade carbohydrates for phosphate with their fungal symbionts. However, recent studies show that plant-derived lipids probably represent the most essential currency of exchange. Understanding the regulation of plant genes involved in the currency of exchange is crucial to understanding stability of this mutualism. Plants encounter many different AMF genotypes that vary greatly in the benefit they confer to plants. Yet the role that fungal genetic variation plays in the regulation of this currency has not received much attention. We used a high-resolution phylogeny of one AMF species (Rhizophagus irregularis) to show that fungal genetic variation drives the regulation of the plant fatty acid pathway in cassava (Manihot esculenta); a pathway regulating one of the essential currencies of trade in the symbiosis. The regulation of this pathway was explained by clearly defined patterns of fungal genome-wide variation representing the precise fungal evolutionary history. This represents the first demonstrated link between the genetics of AMF and reprogramming of an essential plant pathway regulating the currency of exchange in the symbiosis. The transcription factor RAM1 was also revealed as the dominant gene in the fatty acid plant gene co-expression network. Our study highlights the crucial role of variation in fungal genomes in the trade of resources in this important symbiosis and also opens the door to discovering characteristics of AMF genomes responsible for interactions between AMF and cassava that will lead to optimal cassava growth.


Asunto(s)
Hongos/genética , Hongos/fisiología , Variación Genética , Manihot/microbiología , Micorrizas/genética , Simbiosis , Evolución Molecular , Abastecimiento de Alimentos , Hongos/clasificación , Hongos/aislamiento & purificación , Genoma Fúngico , Manihot/fisiología , Micorrizas/clasificación , Micorrizas/aislamiento & purificación , Micorrizas/fisiología , Filogenia , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
14.
Front Plant Sci ; 11: 596929, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424891

RESUMEN

Water scarcity negatively impacts global crop yields and climate change is expected to greatly increase the severity of future droughts. The use of arbuscular mycorrhizal fungi (AMF) can potentially mitigate the effects of water stress in plants. Cassava is a crop that feeds approximately 800 million people daily. Genetically different isolates of the AMF R. irregularis as well as their clonal progeny have both been shown to greatly alter cassava growth in field conditions. Given that cassava experiences seasonal drought in many of the regions in which it is cultivated, we evaluated whether intraspecific variation in R. irregularis differentially alters physiological responses of cassava to water stress. In a first experiment, conducted in field conditions in Western Kenya, cassava was inoculated with two genetically different R. irregularis isolates and their clonal progeny. All cassava plants exhibited physiological signs of stress during the dry period, but the largest differences occurred among plants inoculated with clonal progeny of each of the two parental fungal isolates. Because drought had not been experimentally manipulated in the field, we conducted a second experiment in the greenhouse where cassava was inoculated with two genetically different R. irregularis isolates and subjected to drought, followed by re-watering, to allow recovery. Physiological stress responses of cassava to drought differed significantly between plants inoculated with the two different fungi. However, plants that experienced higher drought stress also recovered at a faster rate following re-watering. We conclude that intraspecific genetic variability in AMF significantly influences cassava physiological responses during water stress. This highlights the potential of using naturally existing variation in AMF to improve cassava tolerance undergoing water stress. However, the fact that clonal progeny of an AMF isolate can differentially affect how cassava copes with natural drought stress in field conditions, highlights the necessity to understand additional factors, beyond genetic variation, which can account for such large differences in cassava responses to drought.

15.
PLoS One ; 14(12): e0226497, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31881076

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants. Recently, studies of the AMF Rhizophagus irregularis recorded within-isolate genetic variation that does not completely match the proposed homokaryon or heterokaryon state (where heterokaryons comprise a population of two distinct nucleus genotypes). We re-analysed published data showing that bi-allelic sites (and their frequencies), detected in proposed homo- and heterokaryote R. irregularis isolates, were similar across independent studies using different techniques. This indicated that observed within-fungus genetic variation was not an artefact of sequencing and that such within- fungus genetic variation possibly exists. We then looked to see if bi-allelic transcripts from three R. irregularis isolates matched those observed in the genome as this would give a strong indication of whether bi-allelic sites recorded in the genome were reliable variants. In putative homokaryon isolates, very few bi-allelic transcripts matched those in the genome. In a putative heterokaryon, a large number of bi-allelic transcripts matched those in the genome. Bi-allelic transcripts also occurred in the same frequency in the putative heterokaryon as predicted from allele frequency in the genome. Our results indicate that while within-fungus genome variation in putative homokaryon and heterokaryon AMF was highly similar in 2 independent studies, there was little support that this variation is transcribed in homokaryons. In contrast, within-fungus variation thought to be segregated among two nucleus genotypes in a heterokaryon isolate was indeed transcribed in a way that is proportional to that seen in the genome.


Asunto(s)
Proteínas Fúngicas/genética , Perfilación de la Expresión Génica/métodos , Glomeromycota/genética , Secuenciación Completa del Genoma/métodos , Regulación Fúngica de la Expresión Génica , Frecuencia de los Genes , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN
16.
PLoS One ; 14(6): e0218969, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31242274

RESUMEN

The adaptability of cassava to low fertile and marginal soils facilitates its production in subsistent agriculture. As a result, smallholder farmers rarely apply fertilizers. The current yield gap is therefore very large, calling for application of fertilizers and soil amendments to improve its productivity. Field experiments were carried out to assess the potential of partially substituting Phosphorus (P) fertilizers by in vitro-produced arbuscular mycorrhizal fungal (AMF) inoculants in cassava production in two agro-ecologies of Nigeria: Northern Guinea Savanna (Samaru) and Sudan Savanna (Minjibir). The experiments were laid out in a split plot design with P levels (0, 17.5, 35 and 52.5 kg P2O5 ha-1) as main plot and AMF inoculants (Control, Glomygel, Glomygel carrier, Mycodrip, Mycodrip carrier) as subplots. The results in Samaru showed that there was significant interaction between AMF and P in root fresh weight, total biomass and root to shoot ratio. The root fresh weights of the inoculated cassava increased proportionally with application of P. However, highest root fresh weight of cassava inoculated with Glomygel was observed at 35 kg P2O5 ha-1 recording 25% yield increase compared to 52.5 kg P2O5 ha-1 application. Interestingly, Cassava inoculated with Glomygel at 17.5 kg P2O5 ha-1 gave root fresh yield statistically similar to where 35 kg P2O5 ha-1 was applied. This represented a 50% reduction in P fertilizer use. Also, cassava inoculated with Glomygel increased leaf nutrient concentrations, which strongly correlated with the root fresh yield. However, no effects of inoculant carriers were observed in yield and nutrient concentrations. Contrarily, there was no significant treatment effect in Minjibir for nearly all the measured parameters. Cassava yield was however, higher in Minjibir than Samaru probably due to soil fertility and structural differences, which resulted in few observable effects of AMF and P treatments at Minjibir. We conclude that under low P conditions inoculation with in vitro produced AMF inoculants could be employed to reduce P fertilizer requirements for cassava and improve yields, but the variability of the responses as a result of soil heterogeneity and the identity of the fungal strain in the inoculant require further investigations before recommending the practice.


Asunto(s)
Inoculantes Agrícolas/fisiología , Manihot/crecimiento & desarrollo , Micorrizas/fisiología , Fósforo/farmacología , Biomasa , Fertilizantes , Manihot/química , Manihot/efectos de los fármacos , Manihot/microbiología , Nigeria , Nutrientes/análisis , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
17.
ISME J ; 13(5): 1226-1238, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30647457

RESUMEN

Arbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, most of the plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organization during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation has a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype × genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.


Asunto(s)
Glomeromycota/genética , Manihot/genética , Manihot/microbiología , Micorrizas/genética , Simbiosis/genética , Genotipo , Análisis de Secuencia de ARN , Transcripción Genética
18.
PLoS One ; 13(11): e0198537, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30462644

RESUMEN

Arbuscular mycorrhizal fungi (AMF) have been shown to influence plant community structure and diversity. Studies based on single plant-single AMF isolate experiments show that within AMF species variation leads to large differential growth responses of different plant species. Because of these differential effects, genetic differences among isolates of an AMF species could potentially have strong effects on the structure of plant communities. We tested the hypothesis that within species variation in the AMF Rhizophagus irregularis significantly affects plant community structure and plant co-existence. We took advantage of a recent genetic characterization of several isolates using double-digest restriction-site associated DNA sequencing (ddRADseq). This allowed us to test not only for the impact of within AMF species variation on plant community structure but also for the role of the R. irregularis phylogeny on plant community metrics. Nine isolates of R. irregularis, belonging to three different genetic groups (Gp1, Gp3 and Gp4), were used as either single inoculum or as mixed diversity inoculum. Plants in a mesocosm representing common species that naturally co-exist in European grasslands were inoculated with the different AMF treatments. We found that within-species differences in R. irregularis did not strongly influence the performance of individual plants or the structure of the overall plant community. However, the evenness of the plant community was affected by the phylogeny of the fungal isolates, where more closely-related AMF isolates were more likely to affect plant community evenness in a similar way compared to more genetically distant isolates. This study underlines the effect of within AMF species variability on plant community structure. While differential effects of the AMF isolates were not strong, a single AMF species had enough functional variability to change the equilibrium of a plant community in a way that is associated with the evolutionary history of the fungus.


Asunto(s)
Glomeromycota , Micorrizas , Filogenia , Raíces de Plantas/microbiología
19.
Mycorrhiza ; 28(4): 369-377, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29675619

RESUMEN

The genetic state of the arbuscular mycorrhizal fungus species Rhizophagus irregularis differs among isolates, including both homokaryotic and dikaryotic isolates. Via the production of multi-nucleate axexual spores, siblings of dikaryotic isolates may inherit unequal frequencies of nucleotypes. Using bg112, a microsatellite marker, previous studies revealed that lines deriving from single spores of the dikaryotic R. irregularis isolate C3 differed in their proportions of different alleles. A genomic study of single nuclei of R. irregularis, however, suggested that this marker was a multi-copy locus and that therefore it was inappropriate to study the inheritance of nuclei in dikaryotic isolates. In this study, we first analysed whole genome data of several R. irregularis isolates and demonstrated that bg112 is indeed a single copy locus in these genomes. Thus, the bg112 locus is a suitable marker to study the relative frequency of nucleotypes in R. irregularis. Second, by using amplicon sequencing, we confirmed the existence of one allele of bg112 in two homokaryotic isolates (DAOM197198 and C2) and two alleles in the dikaryotic isolate (C3). Finally, we found that the relative proportions of two bg112 alleles differed significantly among dikaryotic single-spore lines derived from isolate C3, indicating that genetically different nucleotypes are inherited unequally in this dikaryotic R. irregularis isolate.


Asunto(s)
Frecuencia de los Genes , Genoma Fúngico , Glomeromycota/genética , Repeticiones de Microsatélite/genética , Núcleo Celular/genética
20.
New Phytol ; 220(4): 968-970, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29480929
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...