Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hypertension ; 79(5): 1067-1078, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35193363

RESUMEN

BACKGROUND: In older age, the benefits of antihypertensive treatment (AHT) become less evident, with greater associated risk. Of particular concern is compromising cerebral blood flow (CBF), especially in those with cognitive impairment. METHODS: We created a synthesis of the published evidence by searching multiple electronic databases from 1970 to May 2021. Included studies had participants with mean age ≥50 years, hypertension or cognitive impairment, and assessed CBF before and after initiating AHT. Two authors independently determined eligibility and extracted data. Study quality was assessed using The Risk of Bias in Nonrandomized Studies of Interventions tool. We summarized study characteristics (qualitative synthesis) and performed random-effects meta-analyses (quantitative synthesis). RESULTS: Thirty-two studies (total n=1306) were included, of which 23 were eligible for meta-analysis. In line with the qualitative synthesis, the meta-analysis indicated no effect of AHT initiation on CBF (standardized mean difference, 0.08 [95% CI, -0.07 to 0.22]; P=0.31, I2=42%). This was consistent across subgroups of acute versus chronic AHT, drug class, study design, and CBF measurement. Subgroups by age demonstrated an increase in CBF after AHT in those aged >70 years (standardized mean difference, 4.15 [95% CI, 0.16-8.15]; P=0.04, I2=42%), but not in those aged 50 to 65 and 65 to 70 years (standardized mean difference, 0.18 [95% CI,-2.02 to 2.38]; P=0.87, I2=49%; standardized mean difference, 1.22 [95% CI, -0.45 to 2.88]; P=0.15, I2=68%). Overall, risk of bias was moderate-to-high and quality of evidence (Grading of Recommendations Assessment, Development and Evaluation) was very low, reflecting the observational nature of the data. CONCLUSIONS: Accepting the observed limitations, current evidence does not suggest a harmful effect of AHT on CBF. Concerns over CBF should not preclude treatment of hypertension.


Asunto(s)
Disfunción Cognitiva , Hipertensión , Anciano , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Circulación Cerebrovascular , Cognición , Disfunción Cognitiva/complicaciones , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Persona de Mediana Edad
2.
Eur J Appl Physiol ; 121(8): 2165-2176, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33860383

RESUMEN

PURPOSE: Cerebral autoregulation (CA) aims to attenuate the effects of blood pressure variation on cerebral blood flow. This study assessed the criterion validity of CA derived from near-infrared spectroscopy (NIRS) as an alternative for Transcranial Doppler (TCD). METHODS: Measurements of continuous blood pressure (BP), oxygenated hemoglobin (O2Hb) using NIRS and cerebral blood flow velocity (CBFV) using TCD (gold standard) were performed in 82 controls, 27 patients with hypertension and 94 cognitively impaired patients during supine rest (all individuals) and repeated sit to stand transitions (cognitively impaired patients). The BP-CBFV and BP-O2Hb transfer function phase shifts (TFφ) were computed as CA measures. Spearman correlations (ρ) and Bland Altman limits of agreement (BAloa) between NIRS- and TCD-derived CA measures were computed. BAloa separation < 50° was considered a high absolute agreement. RESULTS: NIRS- and TCD-derived CA estimates were significantly correlated during supine rest (ρ = 0.22-0.30, N = 111-120) and repeated sit-to-stand transitions (ρ = 0.46-0.61, N = 19-32). BAloa separation ranged between 87° and 112° (supine rest) and 65°-77° (repeated sit to stand transitions). CONCLUSION: Criterion validity of NIRS-derived CA measures allows for comparison between groups but was insufficient for clinical application in individuals.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular/fisiología , Disfunción Cognitiva/fisiopatología , Homeostasis/fisiología , Hipertensión/fisiopatología , Espectroscopía Infrarroja Corta , Ultrasonografía Doppler Transcraneal , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
PLoS One ; 15(1): e0227651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31923919

RESUMEN

We tested the influence of blood pressure variability on the reproducibility of dynamic cerebral autoregulation (DCA) estimates. Data were analyzed from the 2nd CARNet bootstrap initiative, where mean arterial blood pressure (MABP), cerebral blood flow velocity (CBFV) and end tidal CO2 were measured twice in 75 healthy subjects. DCA was analyzed by 14 different centers with a variety of different analysis methods. Intraclass Correlation (ICC) values increased significantly when subjects with low power spectral density MABP (PSD-MABP) values were removed from the analysis for all gain, phase and autoregulation index (ARI) parameters. Gain in the low frequency band (LF) had the highest ICC, followed by phase LF and gain in the very low frequency band. No significant differences were found between analysis methods for gain parameters, but for phase and ARI parameters, significant differences between the analysis methods were found. Alternatively, the Spearman-Brown prediction formula indicated that prolongation of the measurement duration up to 35 minutes may be needed to achieve good reproducibility for some DCA parameters. We conclude that poor DCA reproducibility (ICC<0.4) can improve to good (ICC > 0.6) values when cases with low PSD-MABP are removed, and probably also when measurement duration is increased.


Asunto(s)
Determinación de la Presión Sanguínea/métodos , Circulación Cerebrovascular/fisiología , Homeostasis/fisiología , Adulto , Anciano , Presión Arterial/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/fisiopatología , Reproducibilidad de los Resultados
4.
Front Aging Neurosci ; 12: 621947, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519425

RESUMEN

Exercise intervention studies in mild cognitive impairment (MCI), a prodromal stage of Alzheimer's disease (AD), have demonstrated inconsistent yet promising results. Addressing the limitations of previous studies, this trial investigated the effects of a 12-month structured exercise program on the progression of MCI. The NeuroExercise study is a multicenter randomized controlled trial across three European countries (Ireland, Netherlands, Germany). Hundred and eighty-three individuals with amnestic MCI were included and were randomized to a 12-month exercise intervention (3 units of 45 min) of either aerobic exercise (AE; n = 60), stretching and toning exercise (ST; n = 65) or to a non-exercise control group (CG; n = 58). The primary outcome, cognitive performance, was determined by an extensive neuropsychological test battery. For the primary complete case (CC) analyses, between-group differences were analyzed with analysis of covariance under two conditions: (1) the exercise group (EG = combined AE and ST groups) compared to the CG and (2) AE compared to ST. Primary analysis of the full cohort (n = 166, 71.5 years; 51.8% females) revealed no between-group differences in composite cognitive score [mean difference (95% CI)], 0.12 [(-0.03, 0.27), p = 0.13] or in any cognitive domain or quality of life. VO2 peak was significantly higher in the EG compared to the CG after 12 months [-1.76 (-3.39, -0.10), p = 0.04]. Comparing the two intervention groups revealed a higher VO2peak level in the aerobic exercise compared to the stretching and toning group, but no differences for the other outcomes. A 12-month exercise intervention did not change cognitive performance in individuals with amnestic MCI in comparison to a non-exercise CG. An intervention effect on physical fitness was found, which may be an important moderator for long term disease progression and warrants long-term follow-up investigations. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02913053, identifier: NCT02913053.

5.
Front Physiol ; 10: 865, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354518

RESUMEN

Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of >0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p < 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ≤ 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters.

6.
Physiol Meas ; 39(12): 125002, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523976

RESUMEN

OBJECTIVE: Different methods to calculate dynamic cerebral autoregulation (dCA) parameters are available. However, most of these methods demonstrate poor reproducibility that limit their reliability for clinical use. Inter-centre differences in study protocols, modelling approaches and default parameter settings have all led to a lack of standardisation and comparability between studies. We evaluated reproducibility of dCA parameters by assessing systematic errors in surrogate data resulting from different modelling techniques. APPROACH: Fourteen centres analysed 22 datasets consisting of two repeated physiological blood pressure measurements with surrogate cerebral blood flow velocity signals, generated using Tiecks curves (autoregulation index, ARI 0-9) and added noise. For reproducibility, dCA methods were grouped in three broad categories: 1. Transfer function analysis (TFA)-like output; 2. ARI-like output; 3. Correlation coefficient-like output. For all methods, reproducibility was determined by one-way intraclass correlation coefficient analysis (ICC). MAIN RESULTS: For TFA-like methods the mean (SD; [range]) ICC gain was 0.71 (0.10; [0.49-0.86]) and 0.80 (0.17; [0.36-0.94]) for VLF and LF (p = 0.003) respectively. For phase, ICC values were 0.53 (0.21; [0.09-0.80]) for VLF, and 0.92 (0.13; [0.44-1.00]) for LF (p < 0.001). Finally, ICC for ARI-like methods was equal to 0.84 (0.19; [0.41-0.94]), and for correlation-like methods, ICC was 0.21 (0.21; [0.056-0.35]). SIGNIFICANCE: When applied to realistic surrogate data, free from the additional exogenous influences of physiological variability on cerebral blood flow, most methods of dCA modelling showed ICC values considerably higher than what has been reported for physiological data. This finding suggests that the poor reproducibility reported by previous studies may be mainly due to the inherent physiological variability of cerebral blood flow regulatory mechanisms rather than related to (stationary) random noise and the signal analysis methods.


Asunto(s)
Circulación Cerebrovascular , Homeostasis , Anciano , Determinación de la Presión Sanguínea , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados
7.
Hypertension ; 72(1): 139-150, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29844143

RESUMEN

Cerebral autoregulation and baroreflex sensitivity are key mechanisms that maintain cerebral blood flow. This study assessed whether these control mechanisms are affected in patients with dementia and mild cognitive impairment due to Alzheimer disease, as this would increase the risks of antihypertensive treatment. We studied 53 patients with dementia (73.1 years [95% confidence interval (CI), 71.4-74.8]), 37 patients with mild cognitive impairment (69.2 years [95% CI, 66.4-72.0]), and 47 controls (69.4 years [95% CI, 68.3-70.5]). Beat-to-beat blood pressure (photoplethysmography), heart rate, and cerebral blood flow velocity (transcranial Doppler) were measured during 5-minute rest (sitting) and 5 minutes of orthostatic challenges, using repeated sit-to-stand maneuvers. Cerebral autoregulation was assessed using transfer function analysis and the autoregulatory index. Baroreflex sensitivity was estimated with transfer function analysis and by calculating the heart rate response to blood pressure changes during the orthostatic challenges. Dementia patients had the lowest cerebral blood flow velocity (P=0.004). During rest, neither transfer function analysis nor the autoregulatory index indicated impairments in cerebral autoregulation. During the orthostatic challenges, higher autoregulatory index (P=0.011) and lower transfer function gain (P=0.017), indicating better cerebral autoregulation, were found in dementia (4.56 arb. unit [95% CI, 4.14-4.97]; 0.59 cm/s per mm Hg [95% CI, 0.51-0.66]) and mild cognitive impairment (4.59 arb. unit [95% CI, 4.04-5.13]; 0.51 cm/s per mm Hg [95% CI, 0.44-0.59]) compared with controls (3.71 arb. unit [95% CI, 3.35-4.07]; 0.67 cm/s per mm Hg [95% CI, 0.59-0.74]). Baroreflex sensitivity measures did not differ between groups. In conclusion, the key mechanisms to control blood pressure and cerebral blood flow are not reduced in 2 stages of Alzheimer disease compared with controls, both in rest and during orthostatic changes that reflect daily life challenges.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Circulación Cerebrovascular/fisiología , Arteria Cerebral Media/fisiopatología , Anciano , Barorreflejo/fisiología , Prueba de Esfuerzo , Femenino , Estudios de Seguimiento , Homeostasis/fisiología , Humanos , Masculino , Arteria Cerebral Media/diagnóstico por imagen , Estudios Retrospectivos , Ultrasonografía Doppler Transcraneal
8.
J Alzheimers Dis ; 62(2): 579-581, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480202

RESUMEN

Prevention trials in subjects with mild cognitive impairment (MCI), especially lifestyle interventions, can be difficult to carry out, particularly the recruitment and retention of subjects. We experienced these challenges in our multi-site one-year exercise trial in MCI, NeuroExercise. Trial recruitment rates differed significantly across sites; the non-medical sport university site, providing free access to a range of group exercise in a sports environment, proved far more successful than memory clinics linked to hospitals. This suggests that non-medical settings and a non-medical research community facilitating physical activities may be important factors in recruitment of subjects with MCI for large prevention trials.


Asunto(s)
Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/rehabilitación , Ejercicio Físico , Selección de Paciente , Anciano , Europa (Continente) , Femenino , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad
10.
BMC Geriatr ; 17(1): 75, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28330458

RESUMEN

BACKGROUND: Exercise interventions to prevent dementia and delay cognitive decline have gained considerable attention in recent years. Human and animal studies have demonstrated that regular physical activity targets brain function by increasing cognitive reserve. There is also evidence of structural changes caused by exercise in preventing or delaying the genesis of neurodegeneration. Although initial studies indicate enhanced cognitive performance in patients with mild cognitive impairment (MCI) following an exercise intervention, little is known about the effect of an extensive, controlled and regular exercise regimen on the neuropathology of patients with MCI. This study aims to determine the effects of an extensive exercise programme on the progression of MCI. METHODS/DESIGN: This randomised controlled clinical intervention study will take place across three European sites. Seventy-five previously sedentary patients with a clinical diagnosis of MCI will be recruited at each site. Participants will be randomised to one of three groups. One group will receive a standardised 1-year extensive aerobic exercise intervention (3 units of 45 min/week). The second group will complete stretching and toning (non-aerobic) exercise (3 units of 45 min/week) and the third group will act as the control group. Change in all outcomes will be measured at baseline (T0), after six months (T1) and after 12 months (T2). The primary outcome, cognitive performance, will be determined by a neuropsychological test battery (CogState battery, Trail Making Test and Verbal fluency). Secondary outcomes include Montreal Cognitive Assessment (MoCA), cardiovascular fitness, physical activity, structural changes of the brain, quality of life measures and measures of frailty. Furthermore, outcome variables will be related to genetic variations on genes related to neurogenesis and epigenetic changes in these genes caused by the exercise intervention programme. DISCUSSION: The results will add new insights into the prevailing notion that exercise may slow the rate of cognitive decline in MCI. TRIAL REGISTRATION: ClinicalTrials.gov NCT02913053.


Asunto(s)
Disfunción Cognitiva/psicología , Disfunción Cognitiva/terapia , Progresión de la Enfermedad , Terapia por Ejercicio/métodos , Terapia por Ejercicio/psicología , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/diagnóstico , Ejercicio Físico/psicología , Femenino , Promoción de la Salud/métodos , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Calidad de Vida/psicología , Resultado del Tratamiento
11.
J Physiol ; 592(23): 5203-19, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217373

RESUMEN

We examined two novel hypotheses: (1) that orthostatic tolerance (OT) would be prolonged when hyperventilatory-induced hypocapnia (and hence cerebral hypoperfusion) was prevented; and (2) that pharmacological reductions in cerebral blood flow (CBF) at baseline would lower the 'CBF reserve', and ultimately reduce OT. In study 1 (n = 24; aged 25 ± 4 years) participants underwent progressive lower-body negative pressure (LBNP) until pre-syncope; end-tidal carbon dioxide (P ET , CO 2) was clamped at baseline levels (isocapnic trial) or uncontrolled. In study 2 (n = 10; aged 25 ± 4 years), CBF was pharmacologically reduced by administration of indomethacin (INDO; 1.2 mg kg(-1)) or unaltered (placebo) followed by LBNP to pre-syncope. Beat-by-beat measurements of middle cerebral artery blood flow velocity (MCAv; transcranial Doppler), heart rate (ECG), blood pressure (BP; Finometer) and end-tidal gases were obtained continuously. In a subset of subjects' arterial-to-jugular venous differences were obtained to examine the independent impact of hypocapnia or cerebral hypoperfusion (following INDO) on cerebral oxygen delivery and extraction. In study 1, during the isocapnic trial, P ET , CO 2 was successfully clamped at baseline levels at pre-syncope (38.3 ± 2.7 vs. 38.5 ± 2.5 mmHg respectively; P = 0.50). In the uncontrolled trial, P ET , CO 2 at pre-syncope was reduced by 10.9 ± 3.9 mmHg (P ≤ 0.001). Compared to the isocapnic trial, the decline in mean MCAv was 15 ± 4 cm s(-1) (35%; P ≤ 0.001) greater in the uncontrolled trial, yet the time to pre-syncope was comparable between trials (544 ± 130 vs. 572 ± 180 s; P = 0.30). In study 2, compared to placebo, INDO reduced resting MCAv by 19 ± 4 cm s(-1) (31%; P ≤ 0.001), but time to pre-syncope remained similar between trials (placebo: 1123 ± 138 s vs. INDO: 1175 ± 212 s; P = 0.53). The brain extracted more oxygen in face of hypocapnia (34% to 53%) or cerebral hypoperfusion (34% to 57%) to compensate for reductions in delivery. In summary, cerebral hypoperfusion either at rest or induced by hypocapnia at pre-syncope does not impact OT, probably due to a compensatory increase in oxygen extraction.


Asunto(s)
Circulación Cerebrovascular/fisiología , Hipocapnia/fisiopatología , Adulto , Circulación Cerebrovascular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/administración & dosificación , Femenino , Homeostasis/fisiología , Humanos , Hiperventilación/complicaciones , Hiperventilación/fisiopatología , Hipocapnia/etiología , Indometacina/administración & dosificación , Presión Negativa de la Región Corporal Inferior , Masculino , Oxígeno/fisiología , Postura/fisiología , Caracteres Sexuales , Síncope Vasovagal/etiología , Síncope Vasovagal/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...