Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Sci Rep ; 14(1): 13081, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844477

RESUMEN

Extracorporeal cardiopulmonary resuscitation (ECPR) is emerging as a feasible and effective rescue strategy for prolonged cardiac arrest (CA). However, prolonged total body ischemia and reperfusion can cause microvascular occlusion that prevents organ reperfusion and recovery of function. One hypothesized mechanism of microvascular "no-reflow" is leukocyte adhesion and formation of neutrophil extracellular traps. In this study we tested the hypothesis that a leukocyte filter (LF) or leukocyte modulation device (L-MOD) could reduce NETosis and improve recovery of heart and brain function in a swine model of prolonged cardiac arrest treated with ECPR. Thirty-six swine (45.5 ± 2.5 kg, evenly distributed sex) underwent 8 min of untreated ventricular fibrillation CA followed by 30 min of mechanical CPR with subsequent 8 h of ECPR. Two females were later excluded from analysis due to CPR complications. Swine were randomized to standard care (Control group), LF, or L-MOD at the onset of CPR. NET formation was quantified by serum dsDNA and citrullinated histone as well as immunofluorescence staining of the heart and brain for citrullinated histone in the microvasculature. Primary outcomes included recovery of cardiac function based on cardiac resuscitability score (CRS) and recovery of neurologic function based on the somatosensory evoked potential (SSEP) N20 cortical response. In this model of prolonged CA treated with ECPR we observed significant increases in serum biomarkers of NETosis and immunohistochemical evidence of microvascular NET formation in the heart and brain that were not reduced by LF or L-MOD therapy. Correspondingly, there were no significant differences in CRS and SSEP recovery between Control, LF, and L-MOD groups 8 h after ECPR onset (CRS = 3.1 ± 2.7, 3.7 ± 2.6, and 2.6 ± 2.6 respectively; p = 0.606; and SSEP = 27.9 ± 13.0%, 36.7 ± 10.5%, and 31.2 ± 9.8% respectively, p = 0.194). In this model of prolonged CA treated with ECPR, the use of LF or L-MOD therapy during ECPR did not reduce microvascular NETosis or improve recovery of myocardial or brain function. The causal relationship between microvascular NETosis, no-reflow, and recovery of organ function after prolonged cardiac arrest treated with ECPR requires further investigation.


Asunto(s)
Reanimación Cardiopulmonar , Modelos Animales de Enfermedad , Paro Cardíaco , Animales , Paro Cardíaco/terapia , Reanimación Cardiopulmonar/métodos , Porcinos , Femenino , Masculino , Oxigenación por Membrana Extracorpórea/métodos , Leucocitos , Trampas Extracelulares/metabolismo , Procedimientos de Reducción del Leucocitos/métodos
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230241, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853556

RESUMEN

The roles of Ca2+-induced calcium release in synaptic plasticity and metaplasticity are poorly understood. The present study has addressed the role of intracellular Ca2+ stores in long-term potentiation (LTP) and a form of heterosynaptic metaplasticity known as synaptic tagging and capture (STC) at CA1 synapses in mouse hippocampal slices. The effects of two compounds, ryanodine and cyclopiazonic acid (CPA), were examined on LTP induced by three distinct induction protocols: weak (w), compressed (c) and spaced (s) theta-burst stimulation (TBS). These compounds did not significantly affect LTP induced by the wTBS (one episode of TBS; 25 stimuli) or cTBS (three such episodes with a 10 s inter-episode interval (IEI); 75 stimuli) but substantially inhibited LTP induced by a sTBS (10 min IEI; 75 stimuli). Ryanodine and CPA also prevented a small heterosynaptic potentiation that was observed with the sTBS protocol. Interestingly, these compounds also prevented STC when present during either the sTBS or the subsequent wTBS, applied to an independent input. All of these effects of ryanodine and CPA were similar to that of a calcium-permeable AMPA receptor blocker. In conclusion, Ca2+ stores provide one way in which signals are propagated between synaptic inputs and, by virtue of their role in STC, may be involved in associative long-term memories. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Calcio , Potenciación a Largo Plazo , Rianodina , Sinapsis , Animales , Potenciación a Largo Plazo/fisiología , Ratones , Sinapsis/fisiología , Rianodina/farmacología , Calcio/metabolismo , Indoles/farmacología , Hipocampo/fisiología , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Región CA1 Hipocampal/fisiología , Masculino
3.
Front Nutr ; 11: 1387268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812935

RESUMEN

Cardiac arrest is a leading cause of death globally. Only 25.8% of in-hospital and 33.5% of out-of-hospital individuals who achieve spontaneous circulation following cardiac arrest survive to leave the hospital. Respiratory failure and acute coronary syndrome are the two most common etiologies of cardiac arrest. Effort has been made to improve the outcomes of individuals resuscitated from cardiac arrest. Magnesium is an ion that is critical to the function of all cells and organs. It is often overlooked in everyday clinical practice. At present, there have only been a small number of reviews discussing the role of magnesium in cardiac arrest. In this review, for the first time, we provide a comprehensive overview of magnesium research in cardiac arrest focusing on the effects of magnesium on the occurrence and prognosis of cardiac arrest, as well as in the two main diseases causing cardiac arrest, respiratory failure and acute coronary syndrome. The current findings support the view that magnesium disorder is associated with increased risk of cardiac arrest as well as respiratory failure and acute coronary syndrome.

4.
Cell Rep ; 43(5): 114156, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38687642

RESUMEN

The maintenance of antigen-specific CD8+ T cells underlies the efficacy of vaccines and immunotherapies. Pathways contributing to CD8+ T cell loss are not completely understood. Uncovering the pathways underlying the limited persistence of CD8+ T cells would be of significant benefit for developing novel strategies of promoting T cell persistence. Here, we demonstrate that murine CD8+ T cells experience endoplasmic reticulum (ER) stress following activation and that the ER-associated degradation (ERAD) adapter Sel1L is induced in activated CD8+ T cells. Sel1L loss limits CD8+ T cell function and memory formation following acute viral infection. Mechanistically, Sel1L is required for optimal bioenergetics and c-Myc expression. Finally, we demonstrate that human CD8+ T cells experience ER stress upon activation and that ER stress is negatively associated with improved T cell functionality in T cell-redirecting therapies. Together, these results demonstrate that ER stress and ERAD are important regulators of T cell function and persistence.


Asunto(s)
Linfocitos T CD8-positivos , Estrés del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Memoria Inmunológica , Animales , Humanos , Ratones , Enfermedad Aguda , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Coriomeningitis Linfocítica/patología , Ratones Endogámicos C57BL , Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Masculino , Femenino
5.
Proc Natl Acad Sci U S A ; 121(17): e2318420121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621136

RESUMEN

In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.


Asunto(s)
Linfocitos T CD4-Positivos , Hierro , Ratones , Animales , Hierro/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Hemo/metabolismo
6.
Cells ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38534337

RESUMEN

Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.


Asunto(s)
Citocromos c , Mitocondrias , Humanos , Fosforilación , Citocromos c/metabolismo , Acetilación , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Apoptosis , Respiración , Isquemia/metabolismo
7.
Crit Care ; 27(1): 491, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098060

RESUMEN

BACKGROUND: Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS: Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS: Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS: NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.


Asunto(s)
Lesiones Encefálicas , Reanimación Cardiopulmonar , Enfermedades Mitocondriales , Paro Cardíaco Extrahospitalario , Humanos , Ratones , Animales , Porcinos , Mitocondrias , Isquemia , Modelos Animales de Enfermedad
8.
Nat Commun ; 14(1): 4166, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443314

RESUMEN

Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.


Asunto(s)
Lisina , Daño por Reperfusión , Animales , Porcinos , Lisina/metabolismo , Citocromos c/metabolismo , Fosforilación , Acetilación , Procesamiento Proteico-Postraduccional , Apoptosis , Respiración de la Célula/fisiología , Daño por Reperfusión/metabolismo , Músculo Esquelético/metabolismo
9.
Bioeng Transl Med ; 8(3): e10496, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206207

RESUMEN

Noninvasive delivery of near-infrared light (IRL) to human tissues has been researched as a treatment for several acute and chronic disease conditions. We recently showed that use of specific IRL wavelengths, which inhibit the mitochondrial enzyme cytochrome c oxidase (COX), leads to robust neuroprotection in animal models of focal and global brain ischemia/reperfusion injury. These life-threatening conditions can be caused by an ischemic stroke or cardiac arrest, respectively, two leading causes of death. To translate IRL therapy into the clinic an effective technology must be developed that allows efficient delivery of IRL to the brain while addressing potential safety concerns. Here, we introduce IRL delivery waveguides (IDWs) which meet these demands. We employ a low-durometer silicone that comfortably conforms to the shape of the head, avoiding pressure points. Furthermore, instead of using focal IRL delivery points via fiberoptic cables, lasers, or light-emitting diodes, the distribution of the IRL across the entire area of the IDW allows uniform IRL delivery through the skin and into the brain, preventing "hot spots" and thus skin burns. The IRL delivery waveguides have unique design features, including optimized IRL extraction step numbers and angles and a protective housing. The design can be scaled to fit various treatment areas, providing a novel IRL delivery interface platform. Using fresh (unfixed) human cadavers and isolated cadaver tissues, we tested transmission of IRL via IDWs in comparison to laser beam application with fiberoptic cables. Using the same IRL output energies IDWs performed superior in comparison to the fiberoptic delivery, leading to an up to 95% and 81% increased IRL transmission for 750 and 940 nm IRL, respectively, analyzed at a depth of 4 cm into the human head. We discuss the unique safety features and potential further improvements of the IDWs for future clinical implementation.

10.
Toxicol Appl Pharmacol ; 469: 116512, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030625

RESUMEN

Avagacestat inhibits γ-secretase, a protease that cleaves the amyloid precursor protein (APP) to produce amyloid beta (Aß). Aß plaques, a predominant lesion in Alzheimer's patient's brain, is considered a mechanism driving neurodegeneration. As part of the nonclinical reproductive safety assessment, avagacestat effects on fertility and early embryonic development and embryo-fetal development were evaluated in rats. In the embryo-fetal development study, avagacestat was a selective developmental toxicant with dose-related increased fetal mortality, decreased fetal growth, and increased fetal malformations and variations (primarily affecting the axial and appendicular skeletal system) at ≥3 mg/kg/day. In the female fertility and early embryonic development study, avagacestat-related reductions in female fecundity at ≥5 mg/kg/day were attributed to impaired ovarian follicular development that was reflected in dose-dependent reductions in implantation sites, litter size, and gravid uterine weights. In the male fertility and early embryonic development study, avagacestat-related effects on reproduction could not be fully assessed because of low systemic exposures achieved due to extensive metabolism and clearance of the drug. The results obtained in these studies were consistent with pharmacologically mediated inhibition of γ-secretase and resulting inhibition of Notch processing and signaling that are key for embryonic development and ovary folliculogenesis. These findings are not considered a risk for late-onset AD where the patient population is ≥65 years old most with women who are post-menopausal. However, for treatment of early onset AD with a younger patient population, there are risks for reproductive or developmental toxicities with treatment with gamma secretase inhibitors like avagacestat.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ratas , Humanos , Masculino , Femenino , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fertilidad , Enfermedad de Alzheimer/tratamiento farmacológico
11.
Cells ; 11(19)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36231044

RESUMEN

Disruption of mitochondrial structure/function is well-recognized to be a determinant of cell death in cardiomyocytes subjected to lethal episodes of ischemia-reperfusion (IR). However, the precise mitochondrial event(s) that precipitate lethal IR injury remain incompletely resolved. Using the in vitro HL-1 cardiomyocyte model, our aims were to establish whether: (1) proteolytic processing of optic atrophy protein-1 (OPA1), the inner mitochondrial membrane protein responsible for maintaining cristae junction integrity, plays a causal, mechanistic role in determining cardiomyocyte fate in cells subjected to lethal IR injury; and (2) preservation of OPA1 may contribute to the well-documented cardioprotection achieved with ischemic preconditioning (IPC) and remote ischemic conditioning. We report that HL-1 cells subjected to 2.5 h of simulated ischemia displayed increased activity of OMA1 (the metalloprotease responsible for proteolytic processing of OPA1) during the initial 45 min following reoxygenation. This was accompanied by processing of mitochondrial OPA1 (i.e., cleavage to yield short-OPA1 peptides) and release of short-OPA1 into the cytosol. However, siRNA-mediated knockdown of OPA1 content did not exacerbate lethal IR injury, and did not attenuate the cardioprotection seen with IPC and a remote preconditioning stimulus, achieved by transfer of 'reperfusate' medium (TRM-IPC) in this cell culture model. Taken together, our results do not support the concept that maintenance of OPA1 integrity plays a mechanistic role in determining cell fate in the HL-1 cardiomyocyte model of lethal IR injury, or that preservation of OPA1 underlies the cardioprotection seen with ischemic conditioning.


Asunto(s)
Atrofia Óptica , Daño por Reperfusión , Muerte Celular , GTP Fosfohidrolasas/metabolismo , Humanos , Isquemia/metabolismo , Metaloproteasas/metabolismo , Miocitos Cardíacos/metabolismo , Atrofia Óptica/metabolismo , ARN Interferente Pequeño/metabolismo , Daño por Reperfusión/metabolismo
12.
Biochem Soc Trans ; 50(5): 1377-1388, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36066188

RESUMEN

Ischemic stroke affects over 77 million people annually around the globe. Due to the blockage of a blood vessel caused by a stroke, brain tissue becomes ischemic. While prompt restoration of blood flow is necessary to save brain tissue, it also causes reperfusion injury. Mitochondria play a crucial role in early ischemia-reperfusion injury due to the generation of reactive oxygen species (ROS). During ischemia, mitochondria sense energy depletion and futilely attempt to up-regulate energy production. When reperfusion occurs, mitochondria become hyperactive and produce large amounts of ROS which damages neuronal tissue. This ROS burst damages mitochondria and the cell, which results in an eventual decrease in mitochondrial activity and pushes the fate of the cell toward death. This review covers the relationship between the mitochondrial membrane potential (ΔΨm) and ROS production. We also discuss physiological mechanisms that couple mitochondrial energy production to cellular energy demand, focusing on serine 47 dephosphorylation of cytochrome c (Cytc) in the brain during ischemia, which contributes to ischemia-reperfusion injury. Finally, we discuss the use of near infrared light (IRL) to treat stroke. IRL can both stimulate or inhibit mitochondrial activity depending on the wavelength. We emphasize that the use of the correct wavelength is crucial for outcome: inhibitory IRL, applied early during reperfusion, can prevent the ROS burst from occurring, thus preserving neurological tissue.


Asunto(s)
Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Mitocondrias/metabolismo , Reperfusión , Isquemia/metabolismo , Accidente Cerebrovascular/metabolismo
13.
Front Synaptic Neurosci ; 14: 857675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615440

RESUMEN

In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown. We investigated the expression mechanisms of mGluR-LTD using either a low (30 µM) or a high (100 µM) concentration of (RS)-DHPG. We found that 30 µM DHPG generated presynaptic LTD that required the co-activation of NMDA receptors, whereas 100 µM DHPG resulted in postsynaptic LTD that was independent of the activation of NMDA receptors. We found that both forms of LTD occur at the same synapses and that these may constitute the population with the lowest basal P(r). Our results reveal an unexpected complexity to mGluR-mediated synaptic plasticity in the hippocampus.

14.
Mol Neurobiol ; 59(3): 1872-1881, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35028899

RESUMEN

Brain injury is the most common cause of death for patients resuscitated from cardiac arrest. Magnesium is an attractive neuroprotective compound which protects neurons from ischemic injury by reducing neuronal calcium overload via NMDA receptor modulation and preventing calcium-induced mitochondrial permeability transition. Intramuscular (IM) delivery of MgSO4 during CPR has the potential to target these mechanisms within an early therapeutic window. We hypothesize that IM MgSO4 administrated during CPR could achieve therapeutic serum magnesium levels within 15 min after ROSC and improve neurologic outcomes in a rat model of asphyxial cardiac arrest. Male Long Evans rats were subjected to 8-min asphyxial cardiac arrest and block randomized to receive placebo, 107 mg/kg, 215 mg/kg, or 430 mg/kg MgSO4 IM at the onset of CPR. Serum magnesium concentrations increased rapidly with IM delivery during CPR, achieving twofold to fourfold increase by 15 min after ROSC in all magnesium dose groups. Rats subjected to cardiac arrest or sham surgery were block randomized to treatment groups for assessment of neurological outcomes. We found that IM MgSO4 during CPR had no effect on ROSC rate (p > 0.05). IM MgSO4 treatment had no statistically significant effect on 10-day survival with good neurologic function or hippocampal CA1 pyramidal neuron survival compared to placebo treatment. In conclusion, a single dose IM MgSO4 during CPR achieves up to fourfold baseline serum magnesium levels within 15 min after ROSC; however, this treatment strategy did not improve survival, recovery of neurologic function, or neuron survival. Future studies with repeated dosing or in combination with hypothermic targeted temperature management may be indicated.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Paro Cardíaco/tratamiento farmacológico , Paro Cardíaco/terapia , Sulfato de Magnesio/uso terapéutico , Masculino , Neuroprotección , Ratas , Ratas Long-Evans
15.
Palliat Med ; 36(4): 671-679, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34965756

RESUMEN

BACKGROUND: Much palliative care provision relies on the support of volunteers. Attention is paid to the risks to professionals providing care, such as stress and burnout, but understanding if this is an issue for volunteers is little understood. It is important to understand the impact their role has on volunteers emotional well-being. AIM: To explore the experiences of palliative care volunteers and how the role impacted on their emotional well-being. DESIGN: Interpretative phenomenological analysis, with data collected through semi-structured interviews. SETTING/PARTICIPANTS: Volunteers in patient-facing roles within palliative and end-of-life care services in the UK. RESULTS: Volunteers (n = 10) across three palliative and end-of-life care services. Four themes were developed: (1) it can be challenging; (2) it's where I'm meant to be; (3) managing death; (4) the importance of connection. Challenges included frustrations and questioning themselves. Although difficult at times, volunteers expressed the importance of the role, doing well and that they benefitted too. They also had to manage death and discussed beliefs about life and death, acceptance and managing patients' fears. Connection with the hospice, patients, staff and other volunteers was important, with a need for everyone to feel valued. CONCLUSIONS: Although there are psychosocial benefits for volunteers in their role, it is important to understand the challenges faced and consider ongoing support to help volunteers manage these challenges. This could be addressed through the consideration of coping mechanisms, further training and reflective practice for volunteers.


Asunto(s)
Cuidados Paliativos al Final de la Vida , Enfermería de Cuidados Paliativos al Final de la Vida , Humanos , Cuidados Paliativos/psicología , Investigación Cualitativa , Voluntarios
16.
Environ Res ; 205: 112483, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863984

RESUMEN

Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Bioensayo , Disruptores Endocrinos/toxicidad , Estrógenos , Mamíferos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Recursos Hídricos
17.
Mol Brain ; 14(1): 144, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544455

RESUMEN

Astrocytes express a plethora of G protein-coupled receptors (GPCRs) that are crucial for shaping synaptic activity. Upon GPCR activation, astrocytes can respond with transient variations in intracellular Ca2+. In addition, Ca2+-dependent and/or Ca2+-independent release of gliotransmitters can occur, allowing them to engage in bidirectional neuron-astrocyte communication. The development of designer receptors exclusively activated by designer drugs (DREADDs) has facilitated many new discoveries on the roles of astrocytes in both physiological and pathological conditions. They are an excellent tool, as they can target endogenous GPCR-mediated intracellular signal transduction pathways specifically in astrocytes. With increasing interest and accumulating research on this topic, several discrepancies on astrocytic Ca2+ signalling and astrocyte-mediated effects on synaptic plasticity have emerged, preventing a clear-cut consensus about the downstream effects of DREADDs in astrocytes. In the present study, we performed a side-by-side evaluation of the effects of bath application of the DREADD agonist, clozapine-N-oxide (10 µM), on Gq- and Gi-DREADD activation in mouse CA1 hippocampal astrocytes. In doing so, we aimed to avoid confounding factors, such as differences in experimental procedures, and to directly compare the actions of both DREADDs on astrocytic intracellular Ca2+ dynamics and synaptic plasticity in acute hippocampal slices. We used an adeno-associated viral vector approach to transduce dorsal hippocampi of male, 8-week-old C57BL6/J mice, to drive expression of either the Gq-DREADD or Gi-DREADD in CA1 astrocytes. A viral vector lacking the DREADD construct was used to generate controls. Here, we show that agonism of Gq-DREADDs, but not Gi-DREADDs, induced consistent increases in spontaneous astrocytic Ca2+ events. Moreover, we demonstrate that both Gq-DREADD as well as Gi-DREADD-mediated activation of CA1 astrocytes induces long-lasting synaptic potentiation in the hippocampal CA1 Schaffer collateral pathway in the absence of a high frequency stimulus. Moreover, we report for the first time that astrocytic Gi-DREADD activation is sufficient to elicit de novo potentiation. Our data demonstrate that activation of either Gq or Gi pathways drives synaptic potentiation through Ca2+-dependent and Ca2+-independent mechanisms, respectively.


Asunto(s)
Astrocitos/fisiología , Región CA1 Hipocampal/fisiología , Señalización del Calcio/fisiología , Clozapina/análogos & derivados , Drogas de Diseño/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Astrocitos/efectos de los fármacos , Región CA1 Hipocampal/citología , Clozapina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/efectos de los fármacos , Vectores Genéticos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Receptores Acoplados a Proteínas G/efectos de los fármacos
18.
Cell Death Dis ; 12(5): 475, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980811

RESUMEN

Mitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


Asunto(s)
Dinaminas/metabolismo , Dinámicas Mitocondriales/genética , Mitofagia/genética , Daño por Reperfusión/genética , Animales , Humanos , Ratones , Neuronas/metabolismo , Daño por Reperfusión/metabolismo
19.
Front Physiol ; 12: 628777, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790803

RESUMEN

Traumatic brain injuries (TBIs) caused by a sudden impact to the head alter behavior and impair physical and cognitive function. Besides the severity, type and area of the brain affected, the outcome of TBI is also influenced by the patient's biological sex. Previous studies reporting mitochondrial dysfunction mainly focused on exponential reactive oxygen species (ROS) generation, increased mitochondrial membrane potential, and altered mitochondrial dynamics as a key player in the outcome to brain injury. In this study, we evaluated the effect of a near-infrared (NIR) light exposure on gene expression in a Drosophila TBI model. NIR interacts with cytochrome c oxidase (COX) of the electron transport chain to reduce mitochondrial membrane potential hyperpolarization, attenuate ROS generation, and apoptosis. We subjected w 1118 male and female flies to TBI using a high-impact trauma (HIT) device and subsequently exposed the isolated fly brains to a COX-inhibitory wavelength of 750 nm for 2 hours (hr). Genome-wide 3'-mRNA-sequencing of fly brains revealed that injured w 1118 females exhibit greater changes in transcription compared to males at 1, 2, and 4 hours (hr) after TBI. Inhibiting COX by exposure to NIR downregulates gene expression in injured females but has minimal effect in injured males. Our results suggest that mitochondrial COX modulation with NIR alters gene expression in Drosophila following TBI and the response to injury and NIR exposure varies by biological sex.

20.
Sci Rep ; 11(1): 5133, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664336

RESUMEN

The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.


Asunto(s)
Encéfalo/diagnóstico por imagen , Aprendizaje Automático , Mitocondrias/ultraestructura , Neuronas/ultraestructura , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Red Nerviosa/diagnóstico por imagen , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...