Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sports Health ; : 19417381241245938, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618948

RESUMEN

BACKGROUND: Studies involving human fibroblasts and use of human growth hormone (HGH) administration for injury recovery are limited. It is plausible that if the administration of HGH to human cells increased cellular proliferation and differentiation, then HGH might be able to assist in accelerating recovery from injury. HYPOTHESIS: HGH will increase proliferation and differentiation of human tendon and ligament fibroblasts in vitro based on both a single-dose and a sustained-dose model of HGH administration. STUDY DESIGN: Basic science cellular study. METHODS: Human tendon and ligament tissue were harvested from 24 patients. Tissue samples were digested with type I collagenase to isolate the target cell types. HGH was administered directly to isolated cells at doses ranging from 100 pg/mL to 10 µg/mL, either in a single-dose or a sustained-dose model. Proliferation was analyzed at days 4 and 7. Differentiation of ligament and tendon fibroblasts was assessed at day 14. RESULTS: Administration of a single-dose of HGH to both cell types demonstrated similar or inferior cellular proliferation compared with controls after 7 days. For the sustained-dosing model of ligament fibroblasts, only the 100 ng/mL concentration demonstrated at least statistically similar or improved proliferation compared with controls. When examining the 100 ng/mL HGH concentration with larger sample sizes, cellular proliferation was not improved over controls for any cell type for the single- or sustained-dosing models. Proliferation for tendon fibroblasts was either similar or inferior to the control group at all concentrations of HGH. There was no clear dose-response relationship demonstrating enhanced collagen production with administration of HGH to suggest it enhances injury recovery. CONCLUSION: HGH administered to human tendon and ligament fibroblasts does not appear to positively affect cellular proliferation and differentiation. CLINICAL RELEVANCE: This study does not support the use of HGH for accelerating recovery from injury.

2.
J Mol Biol ; 435(2): 167895, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36463932

RESUMEN

Micrograph comparison remains useful in bioscience. This technology provides researchers with a quick snapshot of experimental conditions. But sometimes a two- condition comparison relies on researchers' eyes to draw conclusions. Our Bioimage Analysis, Statistic, and Comparison (BASIN) software provides an objective and reproducible comparison leveraging inferential statistics to bridge image data with other modalities. Users have access to machine learning-based object segmentation. BASIN provides several data points such as images' object counts, intensities, and areas. Hypothesis testing may also be performed. To improve BASIN's accessibility, we implemented it using R Shiny and provided both an online and offline version. We used BASIN to process 498 image pairs involving five bioscience topics. Our framework supported either direct claims or extrapolations 57% of the time. Analysis results were manually curated to determine BASIN's accuracy which was shown to be 78%. Additionally, each BASIN version's initial release shows an average 82% FAIR compliance score.


Asunto(s)
Biopelículas , Disciplinas de las Ciencias Biológicas , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Flujo de Trabajo , Conjuntos de Datos como Asunto , Disciplinas de las Ciencias Biológicas/métodos
3.
ACS Appl Bio Mater ; 5(2): 528-544, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35045249

RESUMEN

Three-dimensional cellular constructs derived from pluripotent stem cells allow the ex vivo study of neurodevelopment and neurological disease within a spatially organized model. However, the robustness and utility of three-dimensional models is impacted by tissue self-organization, size limitations, nutrient supply, and heterogeneity. In this work, we have utilized the principles of nanoarchitectonics to create a multifunctional polymer/bioceramic composite microsphere system for stem cell culture and differentiation in a chemically defined microenvironment. Microspheres could be customized to produce three-dimensional structures of defined size (ranging from >100 to <350 µm) with lower mechanical properties compared with a thin film. Furthermore, the microspheres softened in solution, approaching more tissue-like mechanical properties over time. With neural stem cells (NSCs) derived from human induced pluripotent stem cells, microsphere-cultured NSCs were able to utilize multiple substrates to promote cell adhesion and proliferation. Prolonged culture of NSC-bound microspheres under differentiating conditions allowed the formation of both neural and glial cell types from control and patient-derived stem cell models. Human NSCs and differentiated neurons could also be cocultured with astrocytes and human umbilical vein endothelial cells, demonstrating application for tissue-engineered modeling of development and human disease. We further demonstrated that microspheres allow the loading and sustained release of multiple recombinant proteins to support cellular maintenance and differentiation. While previous work has principally utilized self-organizing models or protein-rich hydrogels for neural culture, the three-dimensional matrix developed here through nanoarchitectonics represents a chemically defined and robust alternative for the in vitro study of neurodevelopment and nervous system disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades del Sistema Nervioso , Células-Madre Neurales , Células Endoteliales , Humanos , Microesferas
4.
J Mater Chem B ; 5(26): 5196-5205, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250330

RESUMEN

Bone morphogenetic proteins (BMPs, e.g., BMP2 and 7) are potent mediators for bone repair, however, their clinical use has been limited by their safety and cost-effectiveness. Therefore, innovative strategies that can improve the efficacy of BMPs, and thereby, use a lower dose of exogenous BMPs are highly desired. Inspired by the natural interaction between extracellular matrix (ECM) and growth factors, we hypothesize that bone matrix-mimicking nanofibrous scaffold functionalized with BMP binding moieties can selectively capture and stabilize BMPs, and thereby, promote BMP-induced osteogenic differentiation. To test our hypothesis, a gelatin nanofibrous scaffold was fabricated using thermally induced phase separation together with a porogen leaching technique (TIPS&P) and functionalized by a BMP-binding peptide (BBP) through cross-linking. Our data indicated that BBP decoration largely improved the BMP2 binding and retention capacity of the nanofibrous scaffolds without compromising their macro/microstructure and mechanical properties. Importantly, the BBP-functionalized gelatin scaffolds were able to significantly promote BMP2-induced osteogenic differentiation. Moreover, BBP alone was able to significantly stimulate endogenous BMP2 expression and improve osteogenic differentiation. Compared to other affinity-based drug delivery strategies, e.g., heparin and antibody-mediated growth factor delivering techniques, we expect BBP-functionalized scaffolds will be a safer, more feasible and selective strategy for endogenous BMP stimulating and binding. Therefore, our data suggests a promising application of using the BBP-decorated gelatin nanofibrous scaffold to stimulate/capture BMPs and promote endogenous bone formation in situ in contrast to relying on the administration of high doses of exogenous BMPs and transplantation of cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA