Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 125(45): 9838-9851, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34739245

RESUMEN

This paper systematically examines the performance of contemporary wavefunction and density functional theory methods to identify robust and cost-efficient methods for predicting gas-phase anion binding energies. This includes the local coupled cluster LNO-CCSD(T) and DLPNO-CCSD(T), as well as double-hybrid DSD-PBEP86-D3(BJ) and various hybrid functionals M06-2X, B3LYP-D3(BJ), ωB97M-V, and ωB97X-V. The focus is on dual-hydrogen-bonding anion receptors that are commonly found in supramolecular chemistry and organocatalysis, namely, (thio)ureas, deltamides, (thio)squaramides, and croconamides as well as the yet-to-be-explored rhodizonamides. Of the methods examined, M06-2X emerged as the overall best performing method as the other functionals including DSD-PBEP86-D3(BJ) and the local coupled cluster DLPNO-CCSD(T) method displayed systematic errors that increase with the degree of carbonylation of the receptors. Hybrid ONIOM models that employed semiempirical methods (PM7, GFN1-xTB, and GFN2-xTB) and "threefold"-corrected small-basis set potentials (HF-3c, B97-3c, and PBEh-3c) were explored, and the best models resulted in 50- to 500-fold reduction in CPU time compared to W1-local. These calculations provide important insight into the structure-binding relationships where there is a direct correlation between Brønsted acidity and anion binding affinity, though the strength of the correlation also depends on other factors such as hydrogen-bonding geometry and the geometrical distortion that the receptor needs to undergo to bind the anion.

2.
J Phys Chem A ; 125(7): 1553-1563, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33560853

RESUMEN

The DLPNO-CCSD(T) method is designed to study large molecular systems at significantly reduced cost relative to its canonical counterpart. However, the error in this approach is also size-extensive and relies on cancellation of errors for the calculation of relative energies. This work provides a direct comparison of canonical CCSD(T) and TightPNO DLPNO-CCSD(T) calculations of reaction energies and barriers of a broad range of chemical reactions. The dataset includes acidities, anion binding affinities, enolization, Diels-Alder, nucleophilic substitution, and atom transfer reactions and complements existing theoretical datasets in terms of system size as well as new reaction types (e.g., anion binding affinities and chlorine atom transfer reactions). The performance of DLPNO-CCSD(T) was further examined with respect to systematic variation of basis set and system size and amounts of nonbonded interaction present in the system. The errors in the DLPNO-CCSD(T) were found to be relatively insensitive to the choice of basis set for small systems but increase monotonically with system size. Additionally, calculations of barriers appear to be more challenging than reaction energies with errors exceeding 5 kJ mol-1 for many Diels-Alder reactions. Further tests on three realistic organic reactions reveal the impact of the DLPNO approximation in calculating absolute and relative barriers that are important for predictions such as stereoselectivity.

3.
J Org Chem ; 85(12): 8074-8084, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32407087

RESUMEN

High-level quantum chemical calculations were used to elucidate the gas- and solution-phase conformational equilibria for a series of symmetrically substituted (thio)ureas, (thio)squaramides, and croconamides. Gas-phase calculations predict that the thermodynamic conformer of many of these anion receptors is not the dual-hydrogen-bond-facilitating anti-anti conformer as is commonly assumed. For N,N'-diaryl thiosquaramides and croconamides, the syn-syn conformer is typically the predominant conformer. Solution-phase calculations show that the anti-anti conformer is increasingly stabilized as the polarity of the solvent increases. However, the syn-syn conformer remains the lowest energy conformation for croconamides. These predictions are used to explain the acidity versus chloride binding affinity correlations recently reported for some of these compounds. The chloride binding constants for thioureas and croconamides are significantly lower than expected on the basis of their pKa values, and this may be due in part to the need for these receptors to reorganize into the anti-anti conformer. Experimental NMR nuclear Overhauser effect (NOE) measurements of an asymmetrically substituted squaramide and its thio analogue are consistent with the syn-syn conformation being predominant at 298 K. The conformational equilibria should therefore be an important consideration for the design and development of future anion receptors and organocatalysts.

4.
Chemistry ; 26(5): 1103-1110, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31729050

RESUMEN

Three visible-light responsive photoswitches are reported, azobis(1-methyl-benzimidazole) (1), azobis(benzoxazole) (2) and azobis(benzothiazole) (3). Photostationary distributions are obtained upon irradiation with visible light comprising approximately 80 % of the thermally unstable isomer, with thermal half-lives up to 8 min and are mostly invariant to solvent. On protonation, compound 1H+ has absorption extending beyond 600 nm, allowing switching with yellow light, and a thermal half-life just under 5 minutes. The two isomers have significantly different pKa values, offering potential as a pH switch. The absorption spectra of 2 and 3 are insensitive to acid, although changes in the thermal half-life of 3 indicate more basic intermediates that significantly influence the thermal barrier to isomerization. These findings are supported by high-level ab initio calculations, which validate that protonation occurs on the ring nitrogen and that the Z isomer is more basic in all cases.

5.
Phys Chem Chem Phys ; 21(26): 14261-14269, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30565616

RESUMEN

The analysis of the absorption spectrum and density of states of a cluster of phenol solvated with 15 water molecules indicates that the reorganization of the water molecules, facilitating the formation of solvated electrons, is a plausible mechanism in the photodissociation of phenol. Using quantitative wavefunction analysis, we demonstrate that while charge-transfer states involving electron transfer from phenol to water are mainly dark, a considerable number of them exists below the maximum of the ππ* absorption band and could be populated by internal conversion. These low-lying charge-transfer states do not show extended O-H distances, but are found for large electron-hole separations at which several water molecules can solvate and stabilize the transferred electron. Thus, charge-transfer states in solvated phenol can be stabilized by two factors: (i) elongation of the O-H bond, as was extensively discussed in the past, and (ii) reorganization of solvent molecules, as it is shown here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA