Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 63: 102730, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150150

RESUMEN

Cardiovascular disease (CVD) is a leading cause of death worldwide. Supplementation with the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is associated with lower CVD risk. However, results from randomized controlled trials that examine the effect of omega-3 supplementation on CVD risk are inconsistent. This risk-reducing effect may be mediated by reducing inflammation, oxidative stress and serum triglyceride (TG) levels. However, not all individuals respond by reducing TG levels after omega-3 supplementation. This inter-individual variability in TG response to omega-3 supplementation is not fully understood. Hence, we aim to review the evidence for how interactions between omega-3 fatty acid supplementation and genetic variants, epigenetic and gene expression profiling, gut microbiota and habitual intake of omega-3 fatty acids can explain why the TG response differs between individuals. This may contribute to understanding the current controversies and play a role in defining future personalized guidelines to prevent CVD.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Humanos , Triglicéridos , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosahexaenoicos , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos
2.
Antioxidants (Basel) ; 10(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919415

RESUMEN

The liver is one of the first organs affected by accumulated ectopic lipids. Increased de novo lipogenesis and excessive triglyceride accumulation in the liver are hallmarks of nonalcoholic fatty liver disease (NAFLD) and are strongly associated with obesity, insulin resistance, and type 2 diabetes. Maqui dietary supplemented diet-induced obese mice showed better insulin response and decreased weight gain. We previously described that these positive effects of maqui are partially due to an induction of a brown-like phenotype in subcutaneous white adipose tissue that correlated with a differential expression of Chrebp target genes. In this work, we aimed to deepen the molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance focusing on liver metabolism. Our results showed that maqui supplementation decreased hepatic steatosis caused by a high-fat diet. Changes in the metabolic profile include a downregulation of the lipogenic liver X receptor (LXR) target genes and of fatty acid oxidation gene expression together with an increase in the expression of small heterodimer partner interacting leucine zipper protein (Smile), a corepressor of the nuclear receptor family. Our data suggest that maqui supplementation regulates lipid handling in liver to counteract the metabolic impact of a high-fat diet.

3.
Nutrients ; 12(8)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785059

RESUMEN

The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.


Asunto(s)
Flavonoides/administración & dosificación , Flavonoides/farmacología , Obesidad/metabolismo , Polifenoles/administración & dosificación , Polifenoles/farmacología , Tejido Adiposo/metabolismo , Animales , Antioxidantes , Sistema Nervioso Central/metabolismo , Dieta Saludable , Flavonoides/química , Flavonoides/aislamiento & purificación , Depuradores de Radicales Libres , Estilo de Vida Saludable , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Obesidad/prevención & control , Plantas/química , Polifenoles/química , Polifenoles/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
4.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480627

RESUMEN

Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A-stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.

5.
Mol Nutr Food Res ; 62(4)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29266852

RESUMEN

SCOPE: Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Since FGF21 production and signaling are regulated by some bioactive dietary compounds, we analyze the impact of Mediterranean tomato-based sofrito sauce on: (i) the FGF21 expression and signaling in visceral white adipose tissue (vWAT), and (ii) the insulin sensitivity of obese Zucker rats (OZR). METHODS AND RESULTS: OZR are fed with a sofrito-supplemented diet or control diet. Insulin sensitivity and FGF21 signaling are determined. We observed that sofrito is able to improve the responsiveness to both hormones in obese rats. Sofrito-supplemented diet increases FGF21 signaling in vWAT by inducing the expression of the FGF receptors (FGFR1 and FGFR4) that promotes the expression of canonical target genes, like Egr-1, c-Fos and uncoupling protein 1 (Ucp1). CONCLUSIONS: A sofrito-supplemented diet improves insulin and FGF21 sensitivity in OZR, explaining part of sofrito's healthy effects on glucose metabolism. In addition, induction of UCP1 and the unchanged body weight despite the hyperphagic behavior of the sofrito-fed rats suggests that the increase in FGF21 signaling correlates with an increase in energy expenditure (EE). Further studies in humans may help to understand whether sofrito consumption increases the EE in obese individuals.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Dieta Mediterránea , Factores de Crecimiento de Fibroblastos/fisiología , Obesidad/metabolismo , Transducción de Señal/fisiología , Solanum lycopersicum , Animales , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/sangre , Resistencia a la Insulina , Masculino , Ratas , Ratas Zucker
6.
Horm Mol Biol Clin Investig ; 30(1)2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27583468

RESUMEN

Obesity is a worldwide health problem mainly due to its associated comorbidities. Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in metabolic homeostasis in healthy individuals and considered a promising therapeutic candidate for the treatment of obesity. FGF21 is predominantly produced by the liver but also by other tissues, such as white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle, and pancreas in response to different stimuli such as cold and different nutritional challenges that include fasting, high-fat diets (HFDs), ketogenic diets, some amino acid-deficient diets, low protein diets, high carbohydrate diets or specific dietary bioactive compounds. Its target tissues are essentially WAT, BAT, skeletal muscle, heart and brain. The effects of FGF21 in extra hepatic tissues occur through the fibroblast growth factor receptor (FGFR)-1c together with the co-receptor ß-klotho (KLB). Mechanistically, FGF21 interacts directly with the extracellular domain of the membrane bound cofactor KLB in the FGF21- KLB-FGFR complex to activate FGFR substrate 2α and ERK1/2 phosphorylation. Mice lacking KLB are resistant to both acute and chronic effects of FGF21. Moreover, the acute insulin sensitizing effects of FGF21 are also absent in mice with specific deletion of adipose KLB or FGFR1. Most of the data show that pharmacological administration of FGF21 has metabolic beneficial effects. The objective of this review is to compile existing information about the mechanisms that could allow the control of endogenous FGF21 levels in order to obtain the beneficial metabolic effects of FGF21 by inducing its production instead of doing it by pharmacological administration.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Obesidad/metabolismo , Animales , Dieta , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Humanos , Obesidad/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...