Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404601, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619509

RESUMEN

The nitrido-ate complex [(PN)2Ti(N){µ2-K(OEt2)}]2 (1) reductively couples CO and isocyanides in the presence of DME or cryptand, to form rare, five-coordinate TiII complexes having a linear cumulene motif, [K(L)][(PN)2Ti(NCE)] (E = O, L = Kryptofix222, (2); E = NAd, L = 3 DME, (3); E = NtBu, L = 3 DME, (4); E = NAd, L = Kryptofix222, (5)). Oxidation of 2-5 with [Fc][OTf] afforded an isostructural TiIII center containing a neutral cumulene [(PN)2Ti(NCE)] (E = O, (6); E = NAd (7), NtBu (8)). Moreover, 1e- reduction of 6 and 7 in the presence of cryptand cleanly reformed corresponding discrete TiII complexes 2 and 5, which were further characterized by solution magnetization measurements and high- frequency and -field EPR (HFEPR) spectroscopy. Furthermore, oxidation of 7 with [Fc*][B(C6F5)4] resulted in a ligand disproportionated TiIV complex having transoid carbodiimides, [(PN)2Ti(NCNAd)2] (9). Comparison of spectroscopic, structural, and computational data for the divalent, trivalent, and tetravalent systems, including their 15N enriched isotopomers demonstrate these cumulenes to decrease in order of backbonding as TiII→TiIII→TiIV and increasing order of p-donation as TiII→TiIII→TiIV, thus displaying more covalency in TiIII species. Lastly, we show a synthetic cycle whereby complex 1 can deliver an N-atom to π-acids.

2.
J Am Chem Soc ; 146(15): 10687-10698, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578843

RESUMEN

Perfluorooctanoic acid (PFOA) is an artificial chemical of global concern due to its high environmental persistence and potential human health risk. Electrochemical methods are promising technologies for water treatment because they are efficient, cheap, and scalable. The electrochemical reduction of PFOA is one of the current methodologies. This process leads to defluorination of the carbon chain to hydrogenated products. Here, we describe a mechanistic study of the electrochemical reduction of PFOA in gold electrodes. By using linear sweep voltammetry (LSV), an E0' of -1.80 V vs Ag/AgCl was estimated. Using a scan rate diagnosis, we determined an electron-transfer coefficient (αexp) of 0.37, corresponding to a concerted mechanism. The strong adsorption of PFOA into the gold surface is confirmed by the Langmuir-like isotherm in the absence (KA = 1.89 × 1012 cm3 mol-1) and presence of a negative potential (KA = 3.94 × 107 cm3 mol-1, at -1.40 V vs Ag/AgCl). Based on Marcus-Hush's theory, calculations show a solvent reorganization energy (λ0) of 0.9 eV, suggesting a large electrostatic repulsion between the perfluorinated chain and water. The estimated free energy of the transition state of the electron transfer (ΔG‡ = 2.42 eV) suggests that it is thermodynamically the reaction-limiting step. 19F - 1H NMR, UV-vis, and mass spectrometry studies confirm the displacement of fluorine atoms by hydrogen. Density functional theory (DFT) calculations also support the concerted mechanism for the reductive defluorination of PFOA, in agreement with the experimental values.

3.
J Am Chem Soc ; 146(6): 3609-3614, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38290427

RESUMEN

We introduce the arsenido ligand onto the TiIV ion, yielding a remarkably covalent Ti≡As bond and the parent arsinidene Ti═AsH moiety. An anionic arsenido ligand is assembled via reductive decarbonylation involving the discrete TiII salt [K(cryptand)][(PN)2TiCl] (1) (cryptand = 222-Kryptofix) and Na(OCAs)(dioxane)1.5 in thf/toluene to produce the mixed alkali ate-complex [(PN)2Ti(As)]2(µ2-KNa(thf)2) (2) and the discrete salt [K(cryptand)][(PN)2Ti≡As] (3) featuring a terminal Ti≡As ligand. Protonation of 2 or 3 with various weak acids cleanly forms the parent arsinidene [(PN)2Ti═AsH] (4), which upon deprotonation with KCH2Ph in thf generates the more symmetric anionic arsenido [(PN)2Ti(As){µ2-K(thf)2}]2 (5). Experimental and computational studies suggest the pKa of 4 to be ∼23, and the bond orders in 2, 3, and 5 are all in the range of a Ti≡As triple bond, with decreasing bond order in 4.

4.
Inorg Chem ; 63(5): 2586-2596, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251823

RESUMEN

To reveal, quantify, and rationalize the effect of backbone π-extension on ligand redox activity, we studied the ground- and excited-state reduction potentials of eight ruthenium photoredox catalysts with the formula Ru(ppy)2L (L is the redox-active ligand of the bipyridine family) using density functional theory. Our research underlines the profound importance of the fusion position of backbone aromatic C6 rings on the redox activity of ligands in transition metal photoredox catalysts. Namely, certain fusion positions lead to the dearomatization of C6 rings in ligand-centered electron transfer events, resulting in a thermodynamic penalty equivalent to a half-volt negative shift in the reduction potential. Contrarily, the extent of backbone delocalization shows a minimal impact on redox energetics, which can be explained by the charge concentration at the nitrogen contact atoms in ligand-centered reductions. Grounded in Caulton's conceptual framework, we reaffirm the predictive potency of Lewis structures in ligand-centered redox energetics with qualitative and quantitative data. Our hypothesis regarding the effect of backbone ring dearomatization on redox energetics is further corroborated using magnetic and structure-based aromaticity indicators. Highlighting fusion-dependent dearomatization as a determining factor of ligand-centered electron transfer energetics, our findings hold implications for molecular-level design in advanced electroactive materials and catalysts.

5.
Dalton Trans ; 53(5): 2306-2317, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38204353

RESUMEN

Electrochemical water splitting offers the potential for environmentally friendly hydrogen and oxygen gas generation. Here, we present the synthesis, characterization, and electrochemical analyses of four organic polymers where metalloporphyrins are the active center nodes. These materials were obtained from the polymerization reaction of poly(p-phenylene terephtalamide) (PPTA) with the respective amino-functionalized metalloporphyrins, where M = Fe, 1; Co, 2; Ni, 3; Cu, 4. Scanning and transmission electron microscopy images (SEM and TEM) show that these polymers exhibit a layer-type morphology, which is attributed to hydrogen bonding and π-π stacking between the metalloporphyrin nodes. The synthesized materials were characterized by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR). Among the materials studied, the cobalt-based polymer, 2, demonstrates a bifunctional electrocatalytic activity for oxygen (OER) and hydrogen (HER) evolution reactions with overpotentials (η10) of 337 mV and 435 mV, respectively. The Fe, 1, and Ni, 2, polymers are less active for HER with maximum current densities (jmax) of 12.6 and 19.1 mA cm-2 and η10 678 mV, 644 mV. Polymer 2 achieves a jmax of 37.7 mA cm-2 for HER and 133 mA cm-2 for OER. The copper-based material, 4, on the other hand, shows selectivity towards HER with an overpotential (η) of 436 mV and a maximum current density (j) of 45.5 mA cm-2. The bifunctional electrocatalytic performance was tested in the overall water-splitting setup, where polymer 2 requires a cell voltage of 1.64 V at 10 mA cm-2. This work presents a novel approach to heterogenized molecular systems, providing materials with exceptional structural characteristics and enhanced electrocatalytic capabilities.

6.
Inorg Chem ; 61(47): 18923-18933, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36375089

RESUMEN

The electronic structures of the ground and excited electronic states involved in the oxidative and reductive quenching cycles of 12 relevant ruthenium, iridium, and copper photoredox catalysts (S0, T1, Dox, and Dred) are characterized using the recently developed effective oxidation state (EOS) analysis, allowing the monitoring of metal and ligand oxidation states (OSs) along the catalytic cycles. The formal oxidation state assignments derived from the EOS analysis are in agreement with those commonly assumed for these complexes in both ground and excited states. Rather clean and separate ligand- and metal-centered redox events along the different quenching cycles are observed in most of the studied molecular systems. The reliability index obtained for the OS assignations can be readily interpreted in terms of the ionic/covalent character of metal-ligand interactions and ligand non-innocent character. In addition, EOS analysis reveals the high-degree localization of the ligand-centered redox event to one or two redox-active ligand(s) in heteroleptic complexes. Ligand- and metal-condensed spin populations were also computed and analyzed for all the open-shell species involved in this study, showing promises for rapid oxidation state assignments in certain systems, especially Ru complexes, however, suffering from severe defects in other cases.

7.
Angew Chem Int Ed Engl ; 61(43): e202209122, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001771

RESUMEN

A dinuclear hafnium complex containing the parent imido ligand [(PN)(PNC)Hf=NH{µ2 -K}]2 (2) (PN- =(N-(2-Pi Pr2 -4-methylphenyl)-2,4,6-Me3 C6 H2 ; PNC2- =(N-(2-Pi Pr2 -4-methylphenyl)-2,4,6-CH2 Me2 C6 H2 ), was prepared by reduction of the bisazide trans-[(PN)2 Hf(N3 )2 ] (1) with two equiv of KC8 . Encapsulation of K+ in 2 with crown-ether or cryptand affords the first discrete salt [K(encap)][(PN)(PNC)Hf≡NH] (encap=18-crown-6(THF)2 , 3; 2,2,2-Kryptofix, 4), featuring a terminal parent imide and possessing some of the shortest Hf-N bond lengths known to date. DFT calculations revealed formation of 2 to proceed via an extremely basic monomeric nitrido, [(PN)2 Hf≡N]- (A), having a computed pKBH+ of ∼57 followed by heterolytic splitting of an inert 1,2-CH bond of a benzylic methyl group across the Hf≡N triple bond in A. An electronic structure analysis reveals A to possess a covalent Hf≡N triple bond and of super-basic character. We also showcase reactivity of the Hf≡NH bond with various electrophiles.

8.
J Chem Phys ; 157(7): 074306, 2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-35987572

RESUMEN

In this computational study, the electronic structure changes along the oxidative and reductive quenching cycles of a homoleptic and a heteroleptic prototype Cu(I) photoredox catalyst, namely, [Cu(dmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline) and [Cu(phen)(POP)]+ (POP = bis [2-(diphenylphosphino)phenyl]ether), are scrutinized and characterized using quasi-restricted orbitals (QROs), electron density differences, and spin densities. After validating our density functional theory-based computational protocol, the equilibrium geometries and wavefunctions (using QROs and atom/fragment compositions) of the four states involved in photoredox cycle (S0, T1, Dox, and Dred) are systematically and thoroughly described. The formal ground and excited state ligand- and metal-centered redox events are substantiated by the QRO description of the open-shell triplet metal-to-ligand charge-transfer (3MLCT) (d9L-1), Dox (d9L0), and Dred (d10L-1) species and the corresponding structural changes, e.g., flattening distortion, shortening/elongation of Cu-N/Cu-P bonds, are rationalized in terms of the underlying electronic structure transformations. Among others, we reveal the molecular-scale delocalization of the ligand-centered radical in the 3MLCT (d9L-1) and Dred (d9L-1) states of homoleptic [Cu(dmp)2]+ and its localization to the redox-active phenanthroline ligand in the case of heteroleptic [Cu(phen)(POP)]+.


Asunto(s)
Cobre , Electrónica , Cobre/química , Ligandos , Oxidación-Reducción
9.
RSC Adv ; 12(17): 10653-10674, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35425025

RESUMEN

In this work, the photophysical characteristics of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes were described. The concept of thermally activated delayed fluorescence (TADF) and its development throughout the years was also explained. The importance of ΔE (S1-T1) and spin-orbital coupling (SOC) values on the TADF behavior of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes is discussed. Examples of ΔE (S1-T1) values reported in the literature were collected and some trends were proposed (e.g. the effect of the substituents at the 2,9 positions of the phenanthroline ligand). Besides, the techniques (or calculation methods) used for determining ΔE (S1-T1) values were described. The effect of SOC in TADF was also discussed, and examples of the determination of SOC values by DFT and TD-DFT calculations are provided. The last chapter covers the applications of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ TADF complexes and the challenges that are still needed to be addressed to ensure the industrial applications of these compounds.

10.
Angew Chem Int Ed Engl ; 60(32): 17595-17600, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34192399

RESUMEN

Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me )TiCl], yielded the [(TptBu,Me )Ti(η3 -ECNAd)] species (Ad=1-adamantyl, TptBu,Me- =hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3 )3 ; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3- , shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII , VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me )V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E=P.

11.
J Am Chem Soc ; 142(18): 8233-8242, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32279486

RESUMEN

Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)x][(ketguan)Co(N3)2] (ketguan = [(tBu2CN)C(NDipp)2]-, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride Na(THF)4{[(ketguan)Co(N3)]2(µ-N)} (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a CoIII═N═CoIII canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other group 9 bridging nitride complexes, no radical character is detected at the bridging N atom of 1. Indeed, 1 is unreactive toward weak C-H donors and even cocrystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1·CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [(ketguan)Co(N3)(py)]2 (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/Co(III) bridged imido species [(ketguan)Co(py)][(ketguan)Co](µ-NH)(µ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ∼ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5 ± 0.1, supportive of a HAA formation pathway. The reactivity of our system was further probed by photolyzing benzene/pyridine solutions of 4a under H2 and D2 atmospheres (150 psi), which leads to the exclusive formation of the bis(imido) complexes [(ketguan)Co(µ-NH)]2 (6) and [(ketguan)Co(µ-ND)]2 (6-D), respectively, as a result of dihydrogen activation. These results provide unique insights into the chemistry and electronic structure of late 3d metal nitrides while providing entryway into C-H activation pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...