Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 65, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167346

RESUMEN

Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP3-dependent stores. In vivo, this light-induced calcium release is sufficient to remote control muscle contraction in VCR1-expressing tadpoles. VCR1s natively confer light-induced Ca2+ release, suggesting a distinct mechanism for reshaping the response to light of virus-infected algae. The ability of VCR1s to photorelease calcium without altering plasma membrane electrical properties marks them as potential precursors for optogenetics tools, with potential applications in basic research and medicine.


Asunto(s)
Calcio , Rodopsina , Rodopsina/genética , Rodopsina/metabolismo , Luz , Membrana Celular/metabolismo , Fitoplancton/metabolismo , Rodopsinas Microbianas/metabolismo
2.
Nat Commun ; 14(1): 1160, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859433

RESUMEN

By endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K+ channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels. In the dark or ambient light, LAKI is inactive. However, alternating transdermal illumination at 365 nm and 480 nm reversibly blocks and unblocks TREK/TRESK current in nociceptors, enabling rapid control of pain and nociception in intact and freely moving mice and nematode. These results demonstrate, in vivo, the subcellular localization of TREK/TRESK at the nociceptor free nerve endings in which their acute inhibition is sufficient to induce pain, showing LAKI potential as a valuable tool for TREK/TRESK channel studies. More importantly, LAKI gives the ability to reversibly remote-control pain in a non-invasive and physiological manner in naive animals, which has utility in basic and translational pain research but also in in vivo analgesic drug screening and validation, without the need of genetic manipulations or viral infection.


Asunto(s)
Dolor , Canales de Potasio de Dominio Poro en Tándem , Animales , Ratones , Evaluación Preclínica de Medicamentos , Nociceptores , Nematodos , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores
3.
Neurosci Lett ; 773: 136494, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35114333

RESUMEN

The ability to sense pain signals is closely linked to the activity of ion channels expressed in nociceptors, the first neurons that transduce noxious stimuli into pain. Among these ion channels, TREK1, TREK2 and TRAAK from the TREK subfamily of the Two-Pore-Domain potassium (K2P) channels, are hyperpolarizing channels that render neurons hypoexcitable. They are regulated by diverse physical and chemical stimuli as well as neurotransmitters through G-protein coupled receptor activation. Here, we review the molecular mechanisms underlying these regulations and their functional relevance in pain and migraine induction.


Asunto(s)
Trastornos Migrañosos , Canales de Potasio de Dominio Poro en Tándem , Humanos , Dolor , Percepción del Dolor , Potasio
4.
Curr Opin Pharmacol ; 63: 102178, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35065384

RESUMEN

Photopharmacology allows for the remote control of ion channels and receptors by the application of light-sensitive compounds. Upon irradiation with light these molecules change their configuration, enabling channel modulation with both spatial and temporal resolution. For the control of potassium channel physiology mainly two approaches have evolved. Photoswitchable tethered ligands (PTLs) and freely diffusible photochromic ligands (PCLs), targeting K+ channels, serve to gain insights in neuronal functions of the brain and the heart, whereby the molecules have been refined in the past years with special focus on improving switching characteristics in terms of red-shifted wavelengths and temporal resolution. In this review we provide an overview about the application of these tools in studying potassium channels and neuronal circuit, highlighting recent developments towards future implementations.


Asunto(s)
Neuronas , Canales de Potasio , Ligandos
5.
iScience ; 24(9): 102961, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34458705

RESUMEN

Activation and sensitization of trigeminal ganglia (TG) sensory neurons, leading to the release of pro-inflammatory peptides such as calcitonin gene-related peptide (CGRP), are likely a key component in migraine-related headache induction. Reducing TG neuron excitability represents therefore an attractive alternative strategy to relieve migraine pain. Here by using pharmacology and genetic invalidation ex vivo and in vivo, we demonstrate that activating TREK1 and TREK2 two-pore-domain potassium (K2P) channels inhibits TG neuronal firing sufficiently to fully reverse the migraine-like phenotype induced by NO-donors in rodents. Finally, targeting TREK is as efficient as treatment with CGRP antagonists, which represents one of the most effective migraine therapies. Altogether, our results demonstrate that inhibiting TG excitability by pharmacological activation of TREK channels should be considered as an alternative to the current migraine treatment.

6.
Cell Chem Biol ; 28(11): 1648-1663.e16, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33735619

RESUMEN

Despite the power of photopharmacology for interrogating signaling proteins, many photopharmacological systems are limited by their efficiency, speed, or spectral properties. Here, we screen a library of azobenzene photoswitches and identify a urea-substituted "azobenzene-400" core that offers bistable switching between cis and trans with improved kinetics, light sensitivity, and a red-shift. We then focus on the metabotropic glutamate receptors (mGluRs), neuromodulatory receptors that are major pharmacological targets. Synthesis of "BGAG12,400," a photoswitchable orthogonal, remotely tethered ligand (PORTL), enables highly efficient, rapid optical agonism following conjugation to SNAP-tagged mGluR2 and permits robust optical control of mGluR1 and mGluR5 signaling. We then produce fluorophore-conjugated branched PORTLs to enable dual imaging and manipulation of mGluRs and highlight their power in ex vivo slice and in vivo behavioral experiments in the mouse prefrontal cortex. Finally, we demonstrate the generalizability of our strategy by developing an improved soluble, photoswitchable pore blocker for potassium channels.


Asunto(s)
Compuestos Azo/farmacología , Canales de Potasio/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Animales , Compuestos Azo/química , Células Cultivadas , Femenino , Humanos , Ligandos , Ratones , Procesos Fotoquímicos , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Neuroscientist ; 27(3): 268-284, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32715910

RESUMEN

Migraine is a common, disabling neurological disorder with a genetic, environmental, and hormonal component with an annual prevalence estimated at ~15%. It is characterized by attacks of severe, usually unilateral and throbbing headache, and can be accompanied by nausea, vomiting, and photophobia. Migraine is clinically divided into two main subtypes: migraine with aura, when it is preceded by transient neurological disturbances due to cortical spreading depression (CSD), and migraine without aura. Activation and sensitization of trigeminal sensory neurons, leading to the release of pro-inflammatory peptides, is likely a key component in headache pain initiation and transmission in migraine. In the present review, we will focus on the function of two-pore-domain potassium (K2P) channels, which control trigeminal sensory neuron excitability and their potential interest for developing new drugs to treat migraine.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Humanos , Dolor , Canales de Potasio
8.
Cell ; 184(2): 534-544.e11, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33373586

RESUMEN

Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its ß-auxiliary subunit KCNE1 to generate the slow cardiac potassium IKs current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily. Strikingly, assembly with KCNE1 switches TMEM16A from a calcium-dependent to a voltage-dependent ion channel. Importantly, clinically relevant inherited mutations within the TMEM16A-regulating domain of KCNE1 abolish the TMEM16A modulation, suggesting that the TMEM16A-KCNE1 current may contribute to inherited pathologies. Altogether, these findings challenge the dogma of the specificity of auxiliary subunits regarding protein complexes and questions ion channel classification.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidades de Proteína/metabolismo , Animales , Anoctamina-1/metabolismo , Calcio/metabolismo , Canales de Cloruro/metabolismo , Células HEK293 , Humanos , Túbulos Renales Proximales/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Péptidos/metabolismo , Polimorfismo Genético , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , Dominios Proteicos , Sistema Renina-Angiotensina
9.
Neuron ; 104(5): 831-833, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31805261

RESUMEN

In this issue of Neuron, Kanda et al. (2019) find that the two-pore domain potassium channels TRAAK and TREK1 drive axonal action potential repolarization for high-speed and high-frequency nervous impulses in mammalian myelinated nerves.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Nódulos de Ranvier , Potenciales de Acción , Animales , Axones
11.
Biol Aujourdhui ; 213(1-2): 51-57, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31274103

RESUMEN

Migraine is a common, disabling neurological disorder with genetic, environmental and hormonal components and a prevalence estimated at ∼15%. Migraine episodes are notably related, among several factors, to electric hyperexcitability in sensory neurons. Their electrical activity is controlled by ion channels that generate current, specifically by the two-pore-domain potassium, K2P, channels, which inhibit electrical activity. Mutation in the gene encoding TRESK, a K2P channel, causes the formation of TRESK-MT1, the expected non-functional C-terminal truncated TRESK channel, and an additional unexpected protein, TRESK-MT2, which corresponds to a non-functional N-terminal truncated TRESK channel, through a mechanism called frameshift mutation-induced Alternative Translation Initiation (fsATI). TRESK-MT1 is inactive but TRESK-M2 targets two other ion channels, TREK1 and TREK2, inducing a great stimulation of the neuronal electrical activity that may cause migraines. These findings identify TREK1 and TREK2 as potential molecular targets for migraine treatment and suggest that fsATI should be considered as a distinct class of mutations.


Asunto(s)
Trastornos Migrañosos/genética , Canales de Potasio/genética , Animales , Humanos , Trastornos Migrañosos/metabolismo , Canales de Potasio/química , Canales de Potasio/clasificación , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Multimerización de Proteína/fisiología , Transducción de Señal/genética
12.
Neuron ; 101(2): 232-245.e6, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30573346

RESUMEN

It is often unclear why some genetic mutations to a given gene contribute to neurological disorders and others do not. For instance, two mutations have previously been found to produce a dominant negative for TRESK, a two-pore-domain K+ channel implicated in migraine: TRESK-MT, a 2-bp frameshift mutation, and TRESK-C110R. Both mutants inhibit TRESK, but only TRESK-MT increases sensory neuron excitability and is linked to migraine. Here, we identify a new mechanism, termed frameshift mutation-induced alternative translation initiation (fsATI), that may explain why only TRESK-MT is associated with migraine. fsATI leads to the production of a second protein fragment, TRESK-MT2, which co-assembles with and inhibits TREK1 and TREK2, two other two-pore-domain K+ channels, to increase trigeminal sensory neuron excitability, leading to a migraine-like phenotype in rodents. These findings identify TREK1 and TREK2 as potential molecular targets in migraine and suggest that fsATI should be considered as a distinct class of mutations.


Asunto(s)
Potenciales de Acción/genética , Trastornos Migrañosos/patología , Mutación/genética , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Expresión Génica/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/genética , Trastornos Migrañosos/fisiopatología , Modelos Biológicos , Modelos Moleculares , Neurotransmisores/toxicidad , Óxido Nítrico/toxicidad , Oocitos , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas , Ratas Sprague-Dawley , Xenopus
13.
J Gen Physiol ; 150(5): 683-696, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29695412

RESUMEN

Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P3 or PI(3,4)P2 Our results indicate that dimerization plays a significant role in Ci-VSP function.


Asunto(s)
Monoéster Fosfórico Hidrolasas/química , Multimerización de Proteína , Animales , Dominio Catalítico , Células HEK293 , Humanos , Potenciales de la Membrana , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Xenopus
14.
Toxins (Basel) ; 9(7)2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718822

RESUMEN

Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT2 receptors (angiotensin II type 2 receptors; AT2R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT2R, with this action being not affected by known ligands of AT2R. This result points towards novel AT2R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.


Asunto(s)
Analgésicos/farmacología , Toxinas Bacterianas/farmacología , Macrólidos/farmacología , Neuronas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ganglios Espinales/citología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Receptor de Angiotensina Tipo 2/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(15): 4194-9, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27035963

RESUMEN

Twik-related K(+) channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K(+) channel (TRAAK) form the TREK subfamily of two-pore-domain K(+) (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated. Here, we investigated the ability of the members of the TREK subfamily to assemble to form functional heteromeric channels with novel properties. Using single-molecule pull-down (SiMPull) from HEK cell lysate and subunit counting in the plasma membrane of living cells, we show that TREK1, TREK2, and TRAAK readily coassemble. TREK1 and TREK2 can each heterodimerize with TRAAK, but do so less efficiently than with each other. We functionally characterized the heterodimers and found that all combinations form outwardly rectifying potassium-selective channels but with variable voltage sensitivity and pH regulation. TREK1-TREK2 heterodimers show low levels of activity at physiological external pH but, unlike their corresponding homodimers, are activated by both acidic and alkaline conditions. Modeling based on recent crystal structures, along with mutational analysis, suggests that each subunit within a TREK1-TREK2 channel is regulated independently via titratable His. Finally, TREK1/TRAAK heterodimers differ in function from TRAAK homodimers in two critical ways: they are activated by both intracellular acidification and alkalinization and are regulated by the enzyme phospholipase D2. Thus, heterodimerization provides a means for diversifying functionality through an expansion of the channel types within the K2P channels.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/metabolismo , Línea Celular , Dimerización , Humanos , Concentración de Iones de Hidrógeno , Canales de Potasio de Dominio Poro en Tándem/química
17.
Elife ; 5: e09531, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26814051

RESUMEN

During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.


Asunto(s)
Epigénesis Genética , Neuronas/fisiología , Corteza Somatosensorial/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/análisis , Ratones , Proteínas Represoras/análisis , Factores de Transcripción/análisis , Proteínas Supresoras de Tumor/análisis
18.
Proc Natl Acad Sci U S A ; 111(37): 13547-52, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25197053

RESUMEN

Membrane lipids serve as second messengers and docking sites for proteins and play central roles in cell signaling. A major question about lipid signaling is whether diffusible lipids can selectively target specific proteins. One family of lipid-regulated membrane proteins is the TWIK-related K channel (TREK) subfamily of K2P channels: TREK1, TREK2, and TWIK-related arachdonic acid stimulated K(+) channel (TRAAK). We investigated the regulation of TREK channels by phosphatidic acid (PA), which is generated by phospholipase D (PLD) via hydrolysis of phosphatidylcholine. Even though all three of the channels are sensitive to PA, we found that only TREK1 and TREK2 are potentiated by PLD2 and that none of these channels is modulated by PLD1, indicating surprising selectivity. We found that PLD2, but not PLD1, directly binds to the C terminus of TREK1 and TREK2, but not to TRAAK. The results have led to a model for selective lipid regulation by localization of phospholipid enzymes to specific effector proteins. Finally, we show that regulation of TREK channels by PLD2 occurs natively in hippocampal neurons.


Asunto(s)
Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Alcoholes/farmacología , Aminoácidos/metabolismo , Biocatálisis/efectos de los fármacos , Domperidona/análogos & derivados , Domperidona/farmacología , Inhibidores Enzimáticos/farmacología , Células HEK293 , Hipocampo/citología , Humanos , Indoles/farmacología , Activación del Canal Iónico/efectos de los fármacos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Unión Proteica/efectos de los fármacos
19.
Cell ; 157(7): 1565-76, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949969

RESUMEN

Mycobacterium ulcerans, the etiological agent of Buruli ulcer, causes extensive skin lesions, which despite their severity are not accompanied by pain. It was previously thought that this remarkable analgesia is ensured by direct nerve cell destruction. We demonstrate here that M. ulcerans-induced hypoesthesia is instead achieved through a specific neurological pathway triggered by the secreted mycobacterial polyketide mycolactone. We decipher this pathway at the molecular level, showing that mycolactone elicits signaling through type 2 angiotensin II receptors (AT2Rs), leading to potassium-dependent hyperpolarization of neurons. We further validate the physiological relevance of this mechanism with in vivo studies of pain sensitivity in mice infected with M. ulcerans, following the disruption of the identified pathway. Our findings shed new light on molecular mechanisms evolved by natural systems for the induction of very effective analgesia, opening up the prospect of new families of analgesics derived from such systems.


Asunto(s)
Angiotensinas/metabolismo , Úlcera de Buruli/patología , Macrólidos/aislamiento & purificación , Mycobacterium ulcerans , Analgésicos/aislamiento & purificación , Animales , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiología , Modelos Animales de Enfermedad , Edema/microbiología , Humanos , Hipoestesia/inducido químicamente , Macrólidos/química , Macrólidos/metabolismo , Ratones , Neuronas/metabolismo , Canales de Potasio/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Transducción de Señal/efectos de los fármacos
20.
J Neurosci ; 33(28): 11643-54, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23843532

RESUMEN

CXCR4, a receptor for the chemokine CXCL12 (stromal-cell derived factor-1α), is a G-protein-coupled receptor (GPCR), expressed in the immune and CNS and integrally involved in various neurological disorders. The GABAB receptor is also a GPCR that mediates metabotropic action of the inhibitory neurotransmitter GABA and is located on neurons and immune cells as well. Using diverse approaches, we report novel interaction between GABAB receptor agents and CXCR4 and demonstrate allosteric binding of these agents to CXCR4. First, both GABAB antagonists and agonists block CXCL12-elicited chemotaxis in human breast cancer cells. Second, a GABAB antagonist blocks the potentiation by CXCL12 of high-threshold Ca(2+) channels in rat neurons. Third, electrophysiology in Xenopus oocytes and human embryonic kidney cell line 293 cells in which we coexpressed rat CXCR4 and the G-protein inward rectifier K(+) (GIRK) channel showed that GABAB antagonist and agonist modified CXCL12-evoked activation of GIRK channels. To investigate whether GABAB ligands bind to CXCR4, we expressed this receptor in heterologous systems lacking GABAB receptors and performed competition binding experiments. Our fluorescent resonance energy transfer experiments suggest that GABAB ligands do not bind CXCR4 at the CXCL12 binding pocket suggesting allosteric modulation, in accordance with our electrophysiology experiments. Finally, using backscattering interferometry and lipoparticles containing only the CXCR4 receptor, we quantified the binding affinity for the GABAB ligands, confirming a direct interaction with the CXCR4 receptor. The effect of GABAergic agents on CXCR4 suggests new therapeutic potentials for neurological and immune diseases.


Asunto(s)
Baclofeno/farmacología , Quimiocina CXCL12/metabolismo , Agonistas de Receptores GABA-B/metabolismo , Receptores CXCR4/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Baclofeno/metabolismo , Línea Celular Tumoral , Femenino , GABAérgicos/metabolismo , Agonistas de Receptores GABA-B/farmacología , Células HEK293 , Humanos , Masculino , Técnicas de Cultivo de Órganos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Ratas Wistar , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...