Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 267: 116223, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38342013

RESUMEN

Acute lung injury (ALI) is a clinically high mortality disease, which has not yet been effectively treated. The development of anti-ALI drugs is imminent. ALI can be effectively treated by inhibiting the inflammatory cascade and reducing the inflammatory response in the lung. Forsythia suspense is a common Chinese herbal medicine with significant anti-inflammatory activity. Using forsythin as the parent, 27 Forsythin derivatives were designed and synthesized, and the anti-AIL activity of these compounds was evaluated. Among them, compound B5 has the best activity to inhibit the release of IL-6, and the inhibition rate reaches 91.79% at 25 µM, which was 7.5 times that of the parent forsythin. In addition, most of the compounds have no significant cytotoxicity in vitro. Further studies showed that compound B5 had a concentration-dependent inhibitory effect on NO, IL-6 and TNF-α. And the IC50 values of compound B5 for NO and IL-6 are 10.88 µM and 4.93 µM, respectively. We also found that B5 could significantly inhibit the expression of some immune-related cytotoxic factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, B5 inhibits NF-κB/MAPK signaling pathway. In vivo experiments showed that B5 could alleviate lung inflammation in LPS-induced ALI mice and inhibit IL-6, TNF-α, COX-2 and iNOS. In summary, B5 has anti-inflammatory effects and alleviates ALI by regulating inflammatory mediators and inhibiting MAPK and NF-κB signaling pathways.


Asunto(s)
Lesión Pulmonar Aguda , Glucósidos , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ciclooxigenasa 2/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Lipopolisacáridos/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo
2.
Front Pharmacol ; 13: 946445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278191

RESUMEN

Lotus (Nelumbo nucifera) leaves are widely used for both edible and medicinal applications. For its further utilization, we studied the vasodilatory activity of lotus leaf extract for the first time. In this study, we obtained the extracts using different ratios of water and ethanol, which was followed by polarity-dependent extraction. We found that the CH2Cl2 layer exhibited better vasodilatory activity (EC50 = 1.21 ± 0.10 µg/ml). HPLC and ESI-HRMS analysis of the CH2Cl2 layer using the standard product as a control revealed that nuciferine (Emax = 97.95 ± 0.76%, EC50 = 0.36 ± 0.02 µM) was the main component in this layer. Further research revealed that nuciferine exerts a multi-target synergistic effect to promote vasodilation, via the NO signaling pathway, K+ channel, Ca2+ channel, intracellular Ca2+ release, α and ß receptors, etc. Nuciferine exhibits good vasodilatory activity, and it exhibits the potential to be utilized as a lead compound.

3.
Bioorg Chem ; 129: 106110, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36087551

RESUMEN

Using dehydroabietic acid as the lead compound for structural modification, 25 dehydroabietic acid derivatives were synthesized. Among them, compound D1 not only showed the strongest relaxation effect on the aortic vascular ring in vitro (Emax = 99.5 ± 2.1%, EC50 = 3.03 ± 0.96 µM), but also significantly reduced systolic and diastolic blood pressure in rats at a dose of 2.0 mg/kg in vivo. Next, the vascular protective effect of the best active D1 and its molecular mechanism were further investigated by HUVECs. The results showed that D1 induced endothelium-dependent diastole in the rat thoracic aorta in a concentration-dependent manner. Endothelium removal or aortic ring pretreatment with NG-nitro-l-arginine methylester (l-NAME), 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ), and tetraethylammonium (TEA) significantly inhibited D1-induced relaxation. In addition, wortmannin, KT5823, triciribine, diltiazem, BaCl2, 4-aminopyridine, indomethacin, propranolol, and atropine attenuated D1-induced vasorelaxation. D1 increased the phosphorylation of eNOS in HUVECs Furthermore, D1 attenuated the expression of TNF-α-induced cell adhesion molecules such as ICAM-1 and VCAM-1. However, this effect was attenuated by the eNOS inhibitors l-NAME and asymmetric dimethylarginine (ADMA). The findings suggest that D1-induced vasorelaxation through the PI3K/Akt/eNOS/NO/cGMP/PKG pathway by activating the KCa, Kir and KV channels or muscarinic and ß-adrenergic receptors, and inhibiting the l-type Ca2+ channels, which is closely related to the hypotensive action of the agent. Furthermore, D1 exhibits an inhibitory effect on vascular inflammation, which is associated with the observed vascular protective effects.


Asunto(s)
Vasodilatación , Vasodilatadores , Animales , Ratas , Aorta Torácica , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas Sprague-Dawley , Vasodilatadores/química , Tetraetilamonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...